Atlas of Liquid Biopsy


Book Description

This book provides a wealth of images and extensive information on circulating tumor cells (CTCs) and other cells usually observed in blood from patients with cancer, such as giant macrophages, and circulating tumor microemboli (CTM). The field of “liquid biopsy” began with the analysis of CTCs in the early 2000s. In the beginning, molecular techniques were developed to detect these cells in the blood. However, it has since become clear that CTCs initially require a cytopathological analysis to be detected without false positive and negative results. After detection, molecular analysis can be subsequently performed. Cancer is an important cause of mortality, especially when detected in late stages. Even with all the advances that have been made in its treatment, cancer is still challenging, as many patients do not respond to any therapy. Many health agencies have considered early diagnosis as a feasible tool. In this context, it is of the utmost importance to know the morphology and characteristics of CTCs to determine a correct diagnosis. Currently much of the scientific community is committed to expanding our knowledge of CTCs, and this work makes a valuable contribution, presenting hundreds of cell images from patients with various types of cancer, in many different stages of disease, and after receiving various treatments. The Atlas of Liquid Biopsy: Circulating Tumor Cells and Other Rare Cells in Cancer Patients’ Blood is an essential reference guide for all physicians, biologists, biomedics, and professionals working at clinical and research laboratories, hospitals and research centers.




Tumor Organoids


Book Description

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.




Biomarkers in Breast Cancer


Book Description

Expert laboratory and clinical researchers from around the world review how to design and evaluate studies of tumor markers and examine their use in breast cancer patients. The authors cover both the major advances in sophisticated molecular methods and the state-of-the-art in conventional prognostic and predictive indicators. Among the topics discussed are the relevance of rigorous study design and guidelines for the validation studies of new biomarkers, gene expression profiling by tissue microarrays, adjuvant systemic therapy, and the use of estrogen, progesterone, and epidermal growth factor receptors as both prognostic and predictive indicators. Highlights include the evaluation of HER2 and EGFR family members, of p53, and of UPA/PAI-1; the detection of rare cells in blood and marrow; and the detection and analysis of soluble, circulating markers.




Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies


Book Description

Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies, Volume Eight, summarizes the molecular mechanisms of drug resistance in colorectal cancer, along with the most up-to-date therapeutic strategies available. The book discusses reasons why colorectal tumors become refractory during the progression of the disease, but also explains how drug resistance occurs during chemotherapy. In addition, users will find the current therapeutic strategies used by clinicians in their practice in treating colorectal cancer. The combination of conventional anticancer drugs with chemotherapy-sensitizing agents plays a pivotal role in improving the outcome of colorectal cancer patients, in particular those with drug-resistant cancer cells. From a clinical point-of-view, the content of this book provides clinicians with updated therapeutic strategies for a better choice of drugs for drug-resistant colorectal cancer patients. It will be a valuable source for cancer researchers, oncologists and several members of biomedical field who are dedicated to better treat patients with colorectal cancer.




Tumor Markers


Book Description







Ex Vivo Engineering of the Tumor Microenvironment


Book Description

This volume will outline how to recreate the tumor microenvironment, to culture primary tumors without the need for developmental priming factors, and to deliver targeted therapeutics in a manner that recapitulates pharmacokinetics in vivo. Much of what may be learned from this volume will aid in understanding many aspects of the enhanced study of tumor cell biology in a physiologic context, open new avenues for drug screening and biomarker development, and accelerate the preclinical evaluation of novel personalized medicine strategies for patients in real time.




The Breast


Book Description

Offering the most comprehensive, up-to-date information on the diagnosis and management of, and rehabilitation following, surgery for benign and malignant diseases of the breast, this surgical reference is now in a new edition available in both print and online for easy, convenient access to the absolute latest advances.




Circulating Tumor Cells


Book Description

This volume explores various approaches for enrichment, detection, isolation, and molecular profiling of circulating tumor cells (CTCs). Each chapter provides comprehensive descriptions and guidelines on how to perform innovative experiments in CTC research. Included are protocols for capture of CTCs via filtration and density gradient centrifugation; microfluidic and immunomagnetic separation of CTCs; detection of CTCs by immunocytochemistry, fluorescence in situ hybridization, and flow cytometry; assays designed for genomic characterization and functional analyses of CTCs, and many more. Written in the highly successful Methods in Molecular Biology series format, the chapters in this book include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and authoritative, Circula ting Tumor Cells: Methods and Protocols is a valuable resource for laboratory researchers and clinicians who are interested in furthering their studies on CTCs.




Tumor Invasion and Metastasis


Book Description

The clinical significance of tumor spread has always been appreciated. Yet, in spite of the pioneering work and outstanding contributions of investigators such as D. Coman, H. Green, B. Fisher, S. Wood and I. Zeidman, studies on metastasis rarely achieved the popularity afforded to more esoteric areas of tumor biology. Tumor dissemination, occurring as it does in a responding host and being composed of a series of dynamic int~ractions, is a highly complex phenomenon. Few investigators were brave enough to attempt to unravel the mechanisms involved. Paradoxically, this very complexity may have contributed, in part, to the recent upsurge of interest in metastasis research. More and more researchers are becoming fascinated by the complexities of the cellular interactions involved in tumor spread. Accompanying this intellectual stimulation have been technological advances in related fields which allow the derivation of new model systems. The mechanisms of metastatic spread are increasingly amenable to both the reductionist and holistic approaches and it is the purpose of this volume to present many of these model systems while emphasizing the intricacy and complexity of the processes they mimic. We have attempted to emphasize two topics not previously covered in depth in previous books on metastases. These are in vitro models of invasion and in teractions of tumor cells with connective tissue.