Classical and Modern Engineering Methods in Fluid Flow and Heat Transfer


Book Description

This book presents contemporary theoretical methods in fluid flow and heat transfer, emphasizing principles of investigation and modeling of natural phenomena and engineering processes. It is organized into four parts and 12 chapters presenting classical and modern methods. Following the classical methods in Part 1, Part 2 offers in-depth coverage of analytical conjugate methods in convective heat transfer and peristaltic flow. Part 3 explains recent developments in numerical methods including new approaches for simulation of turbulence by direct solution of Navier-Stokes equations. Part 4 provides a wealth of applications in industrial systems, technology processes, biology, and medicine. More than a hundred examples show the applicability of the methods in such areas as nuclear reactors, aerospace, crystal growth, turbine blades, electronics packaging, optical fiber coating, wire casting, blood flow, urinary problems, and food processing. Intended for practicing engineers and students, the book balances strong formulation of problems with detailed explanations of definitions and terminology. Author comments give attention to special terms like singularity, order of magnitude, flow stability, and nonisothermicity characteristics. More than 400 exercises and questions are offered, many of which divide derivations between you and the author. For these exercises, the author describes the solution method and the results in the text, but you are directed to complete specific portions of the solutions. You then have a choice to accept the results or to further explore the underlying problem. Extensive references are provided for further study.




Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine


Book Description

Applications of mathematical heat transfer and fluid flow models in engineering and medicine Abram S. Dorfman, University of Michigan, USA Engineering and medical applications of cutting-edge heat and flow models This book presents innovative efficient methods in fluid flow and heat transfer developed and widely used over the last fifty years. The analysis is focused on mathematical models which are an essential part of any research effort as they demonstrate the validity of the results obtained. The universality of mathematics allows consideration of engineering and biological problems from one point of view using similar models. In this book, the current situation of applications of modern mathematical models is outlined in three parts. Part I offers in depth coverage of the applications of contemporary conjugate heat transfer models in various industrial and technological processes, from aerospace and nuclear reactors to drying and food processing. In Part II the theory and application of two recently developed models in fluid flow are considered: the similar conjugate model for simulation of biological systems, including flows in human organs, and applications of the latest developments in turbulence simulation by direct solution of Navier-Stokes equations, including flows around aircraft. Part III proposes fundamentals of laminar and turbulent flows and applied mathematics methods. The discussion is complimented by 365 examples selected from a list of 448 cited papers, 239 exercises and 136 commentaries. Key features: Peristaltic flows in normal and pathologic human organs. Modeling flows around aircraft at high Reynolds numbers. Special mathematical exercises allow the reader to complete expressions derivation following directions from the text. Procedure for preliminary choice between conjugate and common simple methods for particular problem solutions. Criterions of conjugation, definition of semi-conjugate solutions. This book is an ideal reference for graduate and post-graduate students and engineers.




Handbook of Fluid Dynamics


Book Description

Handbook of Fluid Dynamics offers balanced coverage of the three traditional areas of fluid dynamics—theoretical, computational, and experimental—complete with valuable appendices presenting the mathematics of fluid dynamics, tables of dimensionless numbers, and tables of the properties of gases and vapors. Each chapter introduces a different fluid dynamics topic, discusses the pertinent issues, outlines proven techniques for addressing those issues, and supplies useful references for further research. Covering all major aspects of classical and modern fluid dynamics, this fully updated Second Edition: Reflects the latest fluid dynamics research and engineering applications Includes new sections on emerging fields, most notably micro- and nanofluidics Surveys the range of numerical and computational methods used in fluid dynamics analysis and design Expands the scope of a number of contemporary topics by incorporating new experimental methods, more numerical approaches, and additional areas for the application of fluid dynamics Handbook of Fluid Dynamics, Second Edition provides an indispensable resource for professionals entering the field of fluid dynamics. The book also enables experts specialized in areas outside fluid dynamics to become familiar with the field.




The Cell Method


Book Description

The Cell Method (CM) is a computational tool that maintains critical multidimensional attributes of physical phenomena in analysis. This information is neglected in the differential formulations of the classical approaches of finite element, boundary element, finite volume, and finite difference analysis, often leading to numerical instabilities and spurious results. This book highlights the central theoretical concepts of the CM that preserve a more accurate and precise representation of the geometric and topological features of variables for practical problem solving. Important applications occur in fields such as electromagnetics, electrodynamics, solid mechanics and fluids. CM addresses non-locality in continuum mechanics, an especially important circumstance in modeling heterogeneous materials. Professional engineers and scientists, as well as graduate students, are offered: • A general overview of physics and its mathematical descriptions; • Guidance on how to build direct, discrete formulations; • Coverage of the governing equations of the CM, including nonlocality; • Explanations of the use of Tonti diagrams; and • References for further reading.




Tubular Combustion


Book Description

Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scale and large-scale applications like steel making, chemical processing, flexible-fuel-source heaters, efficient boilers, and other similar uses




Numerical Methods in Fluid Dynamics


Book Description

Here is an introduction to numerical methods for partial differential equations with particular reference to those that are of importance in fluid dynamics. The author gives a thorough and rigorous treatment of the techniques, beginning with the classical methods and leading to a discussion of modern developments. For easier reading and use, many of the purely technical results and theorems are given separately from the main body of the text. The presentation is intended for graduate students in applied mathematics, engineering and physical sciences who have a basic knowledge of partial differential equations.




Microscale Combustion and Power Generation


Book Description

Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: • An overview of the fundamental physics and phenomena of microscale combustion; • Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; • The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, and micro heat engines; • An assessment of the additional research necessary to develop compact and high energy density energy conversion systems that are truly practical.




Modeling and Analysis of Modern Fluid Problems


Book Description

Modeling and Analysis of Modern Fluids helps researchers solve physical problems observed in fluid dynamics and related fields, such as heat and mass transfer, boundary layer phenomena, and numerical heat transfer. These problems are characterized by nonlinearity and large system dimensionality, and 'exact' solutions are impossible to provide using the conventional mixture of theoretical and analytical analysis with purely numerical methods. To solve these complex problems, this work provides a toolkit of established and novel methods drawn from the literature across nonlinear approximation theory. It covers Padé approximation theory, embedded-parameters perturbation, Adomian decomposition, homotopy analysis, modified differential transformation, fractal theory, fractional calculus, fractional differential equations, as well as classical numerical techniques for solving nonlinear partial differential equations. In addition, 3D modeling and analysis are also covered in-depth. - Systematically describes powerful approximation methods to solve nonlinear equations in fluid problems - Includes novel developments in fractional order differential equations with fractal theory applied to fluids - Features new methods, including Homotypy Approximation, embedded-parameter perturbation, and 3D models and analysis




Fluid Dynamics for Physicists


Book Description

It is over three hundred and fifty years since Torricelli discovered the law obeyed by fountains, yet fluid dynamics remains an active and important branch of physics. This book provides an accessible and comprehensive account of the subject, emphasising throughout the fundamental physical principles, and stressing the connections with other branches of physics. Beginning with a gentle introduction, the book goes on to cover Bernouilli's theorem, compressible flow, potential flow, surface waves, viscosity, vorticity dynamics, thermal convection and instabilities, turbulence, non-Newtonian fluids and the propagation and attenuation of sound in gases. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable, but it will also be of great interest to anyone who wants to find out more about this fascinating subject.




Fluid Flow and Heat Transfer in Cellular Solids


Book Description

To determine the characteristics and properties of cellular solids for an application, and to allow a systematic practical use by means of correlations and modelling approaches, we perform experimental investigations and develop numerical methods. In view of coupled multi-physics simulations, we employ the phase-field method. Finally, the applicability is demonstrated exemplarily for open-cell metal foams, providing qualitative and quantitative comparison with experimental data.