Classical Relativistic Many-Body Dynamics


Book Description

in this work, we must therefore assume several abstract concepts that hardly need defending at this point in the history of mechanics. Most notably, these include the concept of the point particle and the concept of the inertial observer. The study of the relativistic particle system is undertaken here by means of a particular classical theory, which also exists on the quantum level, and which is especially suited to the many-body system in flat spacetime. In its fundamental postulates, the theory may be consid ered to be primarily the work of E.C.G. Stiickelberg in the 1940's, and of L.P. Horwitz and C. Piron in the 1970's, who may be said to have provided the generalization of Stiickelberg's theory to the many-body system. The references for these works may be found in Chapter 1. The theory itself may be legitimately called off-shell Hamiltonian dynamics, parameterized relativistic mechanics, or even classical event dynamics. The most important feature of the theory is probably the use of an invariant world time parameter, usually denoted T, which provides an evolution time for the system in such as way as to allow manifest co variance within a Hamiltonian formalism. In general, this parameter is neither a Lorentz-frame time, nor the proper time of the particles in the system.




Classical Relativistic Many-Body Dynamics


Book Description

in this work, we must therefore assume several abstract concepts that hardly need defending at this point in the history of mechanics. Most notably, these include the concept of the point particle and the concept of the inertial observer. The study of the relativistic particle system is undertaken here by means of a particular classical theory, which also exists on the quantum level, and which is especially suited to the many-body system in flat spacetime. In its fundamental postulates, the theory may be consid ered to be primarily the work of E.C.G. Stiickelberg in the 1940's, and of L.P. Horwitz and C. Piron in the 1970's, who may be said to have provided the generalization of Stiickelberg's theory to the many-body system. The references for these works may be found in Chapter 1. The theory itself may be legitimately called off-shell Hamiltonian dynamics, parameterized relativistic mechanics, or even classical event dynamics. The most important feature of the theory is probably the use of an invariant world time parameter, usually denoted T, which provides an evolution time for the system in such as way as to allow manifest co variance within a Hamiltonian formalism. In general, this parameter is neither a Lorentz-frame time, nor the proper time of the particles in the system.




Relativistic Many-Body Theory and Statistical Mechanics


Book Description

In 1941, E.C.G. Stueckelberg wrote a paper, based on ideas of V. Fock, that established the foundations of a theory that could covariantly describe the classical and quantum relativistic mechanics of a single particle. Horwitz and Piron extended the applicability of this theory in 1973 (to be called the SHP theory) to the many-body problem. It is the purpose of this book to explain this development and provide examples of its applications. We first review the basic ideas of the SHP theory, both classical and quantum, and develop the appropriate form of electromagnetism on this dynamics. After studying the two body problem classically and quantum mechanically, we formulate the N-body problem. We then develop the general quantum scattering theory for the N-body problem and prove a quantum mechanical relativistically covariant form of the Gell-Mann-Low theorem. The quantum theory of relativistic spin is then developed, including spin-statistics, providing the necessary apparatus for Clebsch-Gordan additivity, and we then discuss the phenomenon of entanglement at unequal times. In the second part, we develop relativistic statistical mechanics, including a mechanism for stability of the off-shell mass, and a high temperature phase transition to the mass shell. Finally, some applications are given, such as the explanation of the Lindneret alexperiment, the proposed experiment of Palacios et al which should demonstrate relativistic entanglement (at unequal times), the space-time lattice, low energy nuclear reactions and applications to black hole physics.




Classical Relativistic Many-Body Dynamics


Book Description

in this work, we must therefore assume several abstract concepts that hardly need defending at this point in the history of mechanics. Most notably, these include the concept of the point particle and the concept of the inertial observer. The study of the relativistic particle system is undertaken here by means of a particular classical theory, which also exists on the quantum level, and which is especially suited to the many-body system in flat spacetime. In its fundamental postulates, the theory may be consid ered to be primarily the work of E.C.G. Stiickelberg in the 1940's, and of L.P. Horwitz and C. Piron in the 1970's, who may be said to have provided the generalization of Stiickelberg's theory to the many-body system. The references for these works may be found in Chapter 1. The theory itself may be legitimately called off-shell Hamiltonian dynamics, parameterized relativistic mechanics, or even classical event dynamics. The most important feature of the theory is probably the use of an invariant world time parameter, usually denoted T, which provides an evolution time for the system in such as way as to allow manifest co variance within a Hamiltonian formalism. In general, this parameter is neither a Lorentz-frame time, nor the proper time of the particles in the system.




Foundations of Mechanics


Book Description

In the last three decades the field of mechanics has seen spectacular progress due to the demand for applications in problems of cosmology, thermonuclear fusion, metallurgy, etc. This book provides a broad and thorough overview on the foundations of mechanics. It discusses theoretical mechanics and continuum mechanics, as well as phenomenological thermodynamics, quantum mechanics and relativistic mechanics. Each chapter presents the basic physical facts of interest without going into details and derivations and without using advanced mathematical formalism. The first part constitutes a classical exposition of Lagrange's and Hamilton's analytical mechanics on which most of the continuum theory is based. The section on continuum mechanics focuses mainly on the axiomatic foundations, with many pointers for further research in this area. Special attention is given to modern continuum thermodynamics, both for the foundations and applications. A section on quantum mechanics is also included, since the phenomenological description of various quantum phenomena is becoming of increasing importance. The work will prove indispensable to engineers wishing to keep abreast of recent theoretical advances in their field, as well as initiating and guiding future research.




Introduction To Relativistic Statistical Mechanics: Classical And Quantum


Book Description

This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statistical mechanics. This will interest specialists of various fields, especially the (classical and quantum) plasma physics. However, quantum physics — to which a major part is devoted — will be of more interest since, not only it applies to quantum plasma physics, but also to nuclear matter and to strong magnetic field, cosmology, etc. Although the domain of gauge theory is not covered in this book, the topic is not completely forgotten, in particular in the domain of plasma physics. This book is particularly readable for graduate students and a fortiori to young researchers for whom it offers methods and also appropriate schemes to deal with the current problems encountered in astrophysics, in strong magnetic, in nuclear or even in high energy physics.




Relativistic Quantum Mechanics


Book Description

This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semi group evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. The full gauge invariance of the Stueckelberg-Schroedinger equation results in a 5D generalization of the usual gauge theories. A description of this structure and some of its consequences for both Abelian and non-Abelian fields are discussed. A review of the basic foundations of relativistic classical and quantum statistical mechanics is also given. The Bekenstein-Sanders construction for imbedding Milgrom's theory of modified spacetime structure into general relativity as an alternative to dark matter is also studied.




Quantum Field Theory of Many-Body Systems


Book Description

For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.




Classical Dynamics


Book Description

A comprehensive graduate-level textbook on classical dynamics with many worked examples and over 200 homework exercises, first published in 1998.




Relativity in Rotating Frames


Book Description

Even if the subject is a long-standing one, this is the first monograph on this field. On the one hand, this book is intended to give a rather wide review on this field, both in a historical and pedagogical perspective; on the other hand, it aims at critically re-examining and discussing the most controversial issues. For instance, according to some authors the celebrated Sagnac effect is a disproval of the theory of relativity applied to rotating frames; according to others, it is an astonishing experimental evidence of the relativistic theory. In order to give the reader a deeper insight into this research field, the contributing authors discuss their opinions on the main subjects in an enthralling virtual round table: in this way, the reader can get a direct comparison of the various viewpoints on the most controversial and interesting topics. This is particularly expedient, since the differences in the various approaches are often based upon subtleties that can be understood only by a direct comparison of the underlying hypotheses.