Acoustics of Materials


Book Description

This book deals with acoustic wave interaction with different materials, such as porous materials, crystals, biological tissues, nanofibers, etc. Physical phenomena and mathematical models are described, numerical simulations and theoretical predictions are compared to experimental data, and the results are discussed by evoking new trends and perspectives. Several approaches and applications are developed, including non-linear elasticity, propagation, diffusion, soundscape, environmental acoustics, mechanotransduction, infrasound, acoustic beam, microwave sensors, and insulation. The book is composed of three sections: Control of Sound - Absorbing Materials for Damping of Sound, Sound Propagation in Complex/Porous materials and Nondestructive Testing (NDT), Non Linearity, Leakage.




Acoustic Textiles


Book Description

This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.




Sound Materials


Book Description

Detailing over 100 sound absorbing materials and finishes with case studies of innovative architectural and design applications. Sound Materials is a definitive resource for architects, designers, acousticians, engineers, students and creative professionals – the first publication of its kind to catalogue over 100 sound absorbing materials, detailing inspiring real-world applications. Project profiles include work from leading architects and designers such as OMA, Gehry Partners, Foster + Partners, Ronan and Erwan Bouroullec, and Barber & Osgerby. These projects showcase sound absorbing materials in a variety of interior design and architectural contexts and underscore some of the common acoustical and material challenges presented by specific applications, such as healthcare, education, performing arts, office, retail and industrial environments. Fundamental technical concepts are clearly presented to offer readers with an understanding of how materials absorb sound and how these materials are commonly used to reduce noise and reverberation, inform our sense of space, and improve communication in everyday environments. This book not only surveys an extensive range of materials past, present and emerging, but also highlights many exciting opportunities for future innovation and collaboration at the intersections of acoustical engineering, materials science, design and architecture.







Sound Insulation


Book Description

Sound insulation is an important aspect of building performance. This book is a comprehensive guide to sound and vibration theory and its application to the measurement and prediction of sound insulation in buildings. It enables the reader to tackle a wide range of issues relating to sound insulation during the design and construction stages of a building, and to solve problems in existing buildings. The book has been written for engineers, consultants, building designers, students in acoustics, researchers and those involved in the manufacture and design of building products. Key aspects are that it: * Explains the fundamental theory using examples that show its direct application to buildings * Guides the reader through the links between measurement and theory * Explains concepts that are important for the application, interpretation and understanding of guidance documents, test reports, product data sheets, published papers, regulations and Standards * Makes direct reference to ISO and EN Standards on sound insulation * Contains a large number of illustrations showing measurements, predictions and example calculations for quick reference Carl Hopkins previously worked on building acoustics and environmental noise at the Building Research Establishment. During this time he was involved with sound insulation in research, consultancy, standardization, and building regulations as well as being an advisor on acoustics to government departments. He is currently a Senior Lecturer at the University of Liverpool within the Acoustics Research Unit of the School of Architecture.




Piezoelectric and Acoustic Materials for Transducer Applications


Book Description

The book discusses the underlying physical principles of piezoelectric materials, important properties of ferroelectric/piezoelectric materials used in today’s transducer technology, and the principles used in transducer design. It provides examples of a wide range of applications of such materials along with the appertaining rationales. With contributions from distinguished researchers, this is a comprehensive reference on all the pertinent aspects of piezoelectric materials.




Sound Insulation in Buildings


Book Description

The book explains sound insulation in buildings at a level suitable for both graduate students and expert consultants. Theoretical models are set out for sound transmission in buildings, with an emphasis on thick and heavy constructions. Thus, the description is not restrained by the common assumption of bending waves which is characteristic of thin plates, only. A general description is provided, with the modal density in the structures as a key parameter. At low frequencies statistical energy analysis is replaced by modal energy analysis. Sound transmission through windows and facades is represented by a model that allows any angle on incidence, including the special case of grazing incidence. One chapter is devoted to the subjective evaluation of sound insulation, particularly noise from neighbours, and how this can be applied in a sound classification scheme for dwellings. Measurement methods in building acoustics are presented with emphasis on modern methods using MLS signals or sine sweeps. The analysis and estimation of measurement uncertainty is discussed in detail. In a final chapter examples of experimental buildings with high sound insulation are explained.




The Indian Ocean Nodule Field


Book Description

The book includes a synthesis of research findings on the structure and evolution of the Central Indian Ocean Basin and its ferromanganese deposits, in particular, on the exploration campaign since 1980s. A comprehensive mixture of recent studies along with classical theories starting from the 1960s is the hallmark of the book. Recent concepts and hypotheses, and also critical appreciation of the state-of-the-art knowledge on nodule formation and resource management are incorporated. After limiting the geographical extension of the nodule field and describing its physiographic, geological, biological, physical and chemical characteristics in chapter 1, the various structural, tectonic and volcanic elements are described in chapters 2 and 3. The bottom sediment characteristics that floor the nodules and crusts are dealt with in chapter 4. The nodules and crusts are described in detail in chapter 5, and their process of formation in the light of variable source material, local and regional tectonic activities, and midplate secondary volcanisms are discussed. The mining, environment, metallurgy, legal and economic aspects of the nodule resources are discussed in chapter 6. This title fulfils the growing need to bring voluminous, but scattered information in the form of a book for easy dissemination to students and researchers.* First dedicated book on the Indian Ocean manganese nodule resources * Comprehensively discusses the dynamics of nodule formation in the Indian Ocean Nodule Field (IONF) * Independently assesses the influence of tectonics and volcanism on the manganese nodule resource potential in local and regional scales