Compact Complex Surfaces


Book Description

In the 19 years which passed since the first edition was published, several important developments have taken place in the theory of surfaces. The most sensational one concerns the differentiable structure of surfaces. Twenty years ago very little was known about differentiable structures on 4-manifolds, but in the meantime Donaldson on the one hand and Seiberg and Witten on the other hand, have found, inspired by gauge theory, totally new invariants. Strikingly, together with the theory explained in this book these invariants yield a wealth of new results about the differentiable structure of algebraic surfaces. Other developments include the systematic use of nef-divisors (in ac cordance with the progress made in the classification of higher dimensional algebraic varieties), a better understanding of Kahler structures on surfaces, and Reider's new approach to adjoint mappings. All these developments have been incorporated in the present edition, though the Donaldson and Seiberg-Witten theory only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom we are much obliged.




Classification of Algebraic Varieties


Book Description

This volume contains the proceedings of the Algebraic Geometry Conference on Classification of Algebraic Varieties, held in May 1992 at the University of L'Aquila in Italy. The papers discuss a wide variety of problems that illustrate interactions between algebraic geometry and other branches of mathematics. Among the topics covered are algebraic curve theory, algebraic surface theory, the theory of minimal models, braid groups and the topology of algebraic varieties, toric varieties. In addition to algebraic geometers, theoretical physicists in some areas will find this book useful. The book is also suitable for an advanced graduate course in algebraic geometry, as it provides an overview of areas of current research.







Classification of Higher Dimensional Algebraic Varieties


Book Description

Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.







Several Complex Variables and Complex Manifolds I


Book Description

This self-contained and relatively elementary introduction to functions of several complex variables and complex (especially compact) manifolds was first published in 1982. It was intended be a synthesis of those topics and a broad introduction to the field. The work as a whole will be useful to professional mathematicians or mathematical physicists who wish to acquire a further knowledge of this area of mathematics. Many exercises have been included and indeed they form an integral part of the text. The prerequisites for understanding Part I would be met by any mathematics student with a first degree and together the two parts were designed to provide an introduction to the more advanced works in the subject.




Complex Analysis and Algebraic Geometry


Book Description

The articles in this volume cover some developments in complex analysis and algebraic geometry. The book is divided into three parts. Part I includes topics in the theory of algebraic surfaces and analytic surface. Part II covers topics in moduli and classification problems, as well as structure theory of certain complex manifolds. Part III is devoted to various topics in algebraic geometry analysis and arithmetic. A survey article by Ueno serves as an introduction to the general background of the subject matter of the volume. The volume was written for Kunihiko Kodaira on the occasion of his sixtieth birthday, by his friends and students. Professor Kodaira was one of the world's leading mathematicians in algebraic geometry and complex manifold theory: and the contributions reflect those concerns.