CMOS Hotplate Chemical Microsensors


Book Description

The first comprehensive text on microhotplate-based chemical sensor systems in CMOS-technology covers all aspects of successful sensor prototyping: theoretical considerations for modelling, controller- and system design, simulation of circuits and microsensors, design considerations, microfabrication, packaging and testing. A whole family of metal-oxide based microsensor systems with increasing complexity is presented, including fully integrated sensor arrays. This represents one of the first examples of integrated nanomaterials, microtechnology and embedded circuitry.




Integrated Chemical Microsensor Systems in CMOS Technology


Book Description

This book, "Integrated Chemical Microsensor Systems in CMOS Technology", provides a comprehensive treatment of the highly interdisciplinary field of CMOS chemical microsensor systems. It is targeted at students, scientists and engineers who are interested in gaining an introduction to the field of chemical sensing since all the necessary fundamental knowledge is included. However, as it provides detailed information on all important issues related to the realization of chemical microsensors in CMOS technology, it also addresses experts well familiar with the field. After a brief introduction, the fundamentals of chemical sensing are presented. Fabrication and processing steps that are commonly used in the semiconductor industry are then detailed followed by a short description of the microfabrication techniques, and of the CMOS substrate and materials. Thereafter, a comprehensive overview of semiconductor-based and CMOS-based transducer structures for chemical sensors is given. CMOS-technology is then introduced as platform technology, which enables the integration of these microtransducers with the necessary driving and signal conditioning circuitry on the same chip. In a next section, the development of monolithic multisensor arrays and fully developed microsystems with on-chip sensor control and standard interfaces is described. A short section on packaging shows that techniques from the semiconductor industry can be applied to chemical microsensor packaging. The book concludes with a brief outlook on future developments, such as the realization of more complex integrated microsensor systems and methods to interface biological materials, such as cells, with CMOS microelectronics.




CMOS Hotplate Chemical Microsensors


Book Description

The first comprehensive text on microhotplate-based chemical sensor systems in CMOS-technology covers all aspects of successful sensor prototyping: theoretical considerations for modelling, controller- and system design, simulation of circuits and microsensors, design considerations, microfabrication, packaging and testing. A whole family of metal-oxide based microsensor systems with increasing complexity is presented, including fully integrated sensor arrays. This represents one of the first examples of integrated nanomaterials, microtechnology and embedded circuitry.




Thermal Transport for Applications in Micro/Nanomachining


Book Description

Beginning with an overview of nanomachining, this monograph introduces the relevant concepts from solid-state physics, thermodynamics, and lattice structures. It then covers modeling of thermal transport at the nanoscale and details simulations of different processes relevant to nanomachining. The final chapter summarizes the important points and discusses directions for future work to improve the modeling of nanomachining.




Chemical Sensors


Book Description

Chemical sensors are integral to the automation of myriad industrial processes, as well as everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more. This massive reference work will cover all major categories of chemical sensor materials and devices, and their general functional usage...from monitoring and analyzing gases, to analyzing liquids and compounds of all kinds. This is THE reference work on sensors used for chemical detection and analysis. In this final volume of the Chemical Sensors will be found the latest in new chemical sensor applications including remote chemical sensing for such applications as atmosphere monitoring , new uses for electronic "noses" and "tongues," wireless chemical sensors, and new future directions for chemical sensors in industry, agriculture, and transportation.




Handbook of Gas Sensor Materials


Book Description

The two volumes of Handbook of Gas Sensor Materials provide a detailed and comprehensive account of materials for gas sensors, including the properties and relative advantages of various materials. Since these sensors can be applied for the automation of myriad industrial processes, as well as for everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and in many other situations, this handbook is of great value. Gas sensor designers will find a treasure trove of material in these two books.




Measurement, Instrumentation, and Sensors Handbook


Book Description

The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized according to measurement problem, the Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement volume of the Second Edition: Contains contributions from field experts, new chapters, and updates to all 98 existing chapters Covers sensors and sensor technology, time and frequency, signal processing, displays and recorders, and optical, medical, biomedical, health, environmental, electrical, electromagnetic, and chemical variables A concise and useful reference for engineers, scientists, academic faculty, students, designers, managers, and industry professionals involved in instrumentation and measurement research and development, Measurement, Instrumentation, and Sensors Handbook, Second Edition: Electromagnetic, Optical, Radiation, Chemical, and Biomedical Measurement provides readers with a greater understanding of advanced applications.




MEMS and Nanotechnology for Gas Sensors


Book Description

How Can We Lower the Power Consumption of Gas Sensors? There is a growing demand for low-power, high-density gas sensor arrays that can overcome problems relative to high power consumption. Low power consumption is a prerequisite for any type of sensor system to operate at optimum efficiency. Focused on fabrication-friendly microelectromechanical systems (MEMS) and other areas of sensor technology, MEMS and Nanotechnology for Gas Sensors explores the distinct advantages of using MEMS in low power consumption, and provides extensive coverage of the MEMS/nanotechnology platform for gas sensor applications. This book outlines the microfabrication technology needed to fabricate a gas sensor on a MEMS platform. It discusses semiconductors, graphene, nanocrystalline ZnO-based microfabricated sensors, and nanostructures for volatile organic compounds. It also includes performance parameters for the state of the art of sensors, and the applications of MEMS and nanotechnology in different areas relevant to the sensor domain. In addition, the book includes: An introduction to MEMS for MEMS materials, and a historical background of MEMS A concept for cleanroom technology The substrate materials used for MEMS Two types of deposition techniques, including chemical vapour deposition (CVD) The properties and types of photoresists, and the photolithographic processes Different micromachining techniques for the gas sensor platform, and bulk and surface micromachining The design issues of a microheater for MEMS-based sensors The synthesis technique of a nanocrystalline metal oxide layer A detailed review about graphene; its different deposition techniques; and its important electronic, electrical, and mechanical properties with its application as a gas sensor Low-cost, low-temperature synthesis techniques An explanation of volatile organic compound (VOC) detection and how relative humidity affects the sensing parameters MEMS and Nanotechnology for Gas Sensors provides a broad overview of current, emerging, and possible future MEMS applications. MEMS technology can be applied in the automotive, consumer, industrial, and biotechnology domains.




ISTFA 2012


Book Description




Capillary Forces in Microassembly


Book Description

Capillary Forces in Microassembly discusses the use of capillary forces as a gripping principle in microscale assembly. Clearly written and well-organized, this text brings together physical concepts at the microscale with practical applications in micromanipulation. Throughout this work, the reader will find a review of the existing gripping principles, elements to model capillary forces as well as descriptions of the simulation and experimental test bench developed to study the design parameters. Using well-known concepts from surface science (such as surface tension, capillary effects, wettability, and contact angles) as inputs to mechanical models, the amount of effort required to handle micro-components is then predicted. Researchers and engineers involved in micromanipulation and precision assembly will find this a highly useful reference for microassembly system design and analysis.