Source Code Optimization Techniques for Data Flow Dominated Embedded Software


Book Description

This book focuses on source-to-source code transformations that remove addressing-related overhead present in most multimedia or signal processing application programs. This approach is complementary to existing compiler technology. What is particularly attractive about the transformation flow pre sented here is that its behavior is nearly independent of the target processor platform and the underlying compiler. Hence, the different source code trans formations developed here lead to impressive performance improvements on most existing processor architecture styles, ranging from RISCs like ARM7 or MIPS over Superscalars like Intel-Pentium, PowerPC, DEC-Alpha, Sun and HP, to VLIW DSPs like TI C6x and Philips TriMedia. The source code did not have to be modified between processors to obtain these results. Apart from the performance improvements, the estimated energy is also significantly reduced for a given application run. These results were not obtained for academic codes but for realistic and rep resentative applications, all selected from the multimedia domain. That shows the industrial relevance and importance of this research. At the same time, the scientific novelty and quality of the contributions have lead to several excellent papers that have been published in internationally renowned conferences like e. g. DATE. This book is hence of interest for academic researchers, both because of the overall description of the methodology and related work context and for the detailed descriptions of the compilation techniques and algorithms.




Code Optimization Techniques for Embedded Processors


Book Description

The building blocks of today's and future embedded systems are complex intellectual property components, or cores, many of which are programmable processors. Traditionally, these embedded processors mostly have been pro grammed in assembly languages due to efficiency reasons. This implies time consuming programming, extensive debugging, and low code portability. The requirements of short time-to-market and dependability of embedded systems are obviously much better met by using high-level language (e.g. C) compil ers instead of assembly. However, the use of C compilers frequently incurs a code quality overhead as compared to manually written assembly programs. Due to the need for efficient embedded systems, this overhead must be very low in order to make compilers useful in practice. In turn, this requires new compiler techniques that take the specific constraints in embedded system de sign into account. An example are the specialized architectures of recent DSP and multimedia processors, which are not yet sufficiently exploited by existing compilers.




Performance Optimization of Numerically Intensive Codes


Book Description

Performance Optimization of Numerically Intensive Codes offers a comprehensive, tutorial-style, hands-on, introductory and intermediate-level treatment of all the essential ingredients for achieving high performance in numerical computations on modern computers. The authors explain computer architectures, data traffic and issues related to performance of serial and parallel code optimization exemplified by actual programs written for algorithms of wide interest. The unique hands-on style is achieved by extensive case studies using realistic computational problems. The performance gain obtained by applying the techniques described in this book can be very significant. The book bridges the gap between the literature in system architecture, the one in numerical methods and the occasional descriptions of optimization topics in computer vendors' literature. It also allows readers to better judge the suitability of certain computer architecture to their computational requirements. In contrast to standard textbooks on computer architecture and on programming techniques the book treats these topics together at the level necessary for writing high-performance programs. The book facilitates easy access to these topics for computational scientists and engineers mainly interested in practical issues related to efficient code development.




Visual C++ Optimization with Assembly Code


Book Description

Describing how the Assembly language can be used to develop highly effective C++ applications, this guide covers the development of 32-bit applications for Windows. Areas of focus include optimizing high-level logical structures, creating effective mathematical algorithms, and working with strings and arrays. Code optimization is considered for the Intel platform, taking into account features of the latest models of Intel Pentium processors and how using Assembly code in C++ applications can improve application processing. The use of an assembler to optimize C++ applications is examined in two ways, by developing and compiling Assembly modules that can be linked with the main program written in C++ and using the built-in assembler. Microsoft Visual C++ .Net 2003 is explored as a programming tool, and both the MASM 6.14 and IA-32 assembler compilers, which are used to compile source modules, are




Advanced Backend Code Optimization


Book Description

This book is a summary of more than a decade of research in the area of backend optimization. It contains the latest fundamental research results in this field. While existing books are often more oriented toward Masters students, this book is aimed more towards professors and researchers as it contains more advanced subjects. It is unique in the sense that it contains information that has not previously been covered by other books in the field, with chapters on phase ordering in optimizing compilation; register saturation in instruction level parallelism; code size reduction for software pipelining; memory hierarchy effects and instruction level parallelism. Other chapters provide the latest research results in well-known topics such as register need, and software pipelining and periodic register allocation.




Zen of Code Optimization


Book Description

Michael Abrash explores the inner workings of all Intel-based PCs including the hot new Pentium. This is the only book available that provides practical and innovative "right-brain" approaches to writing fast PC software using C/C++ and assembly language. This book is packed with "from the trenches" programming secrets and features "undocumented" Pentium programming tips. Provides hundreds of optimized coding examples.




Pyomo – Optimization Modeling in Python


Book Description

This book provides a complete and comprehensive reference/guide to Pyomo (Python Optimization Modeling Objects) for both beginning and advanced modelers, including students at the undergraduate and graduate levels, academic researchers, and practitioners. The text illustrates the breadth of the modeling and analysis capabilities that are supported by the software and support of complex real-world applications. Pyomo is an open source software package for formulating and solving large-scale optimization and operations research problems. The text begins with a tutorial on simple linear and integer programming models. A detailed reference of Pyomo's modeling components is illustrated with extensive examples, including a discussion of how to load data from data sources like spreadsheets and databases. Chapters describing advanced modeling capabilities for nonlinear and stochastic optimization are also included. The Pyomo software provides familiar modeling features within Python, a powerful dynamic programming language that has a very clear, readable syntax and intuitive object orientation. Pyomo includes Python classes for defining sparse sets, parameters, and variables, which can be used to formulate algebraic expressions that define objectives and constraints. Moreover, Pyomo can be used from a command-line interface and within Python's interactive command environment, which makes it easy to create Pyomo models, apply a variety of optimizers, and examine solutions. The software supports a different modeling approach than commercial AML (Algebraic Modeling Languages) tools, and is designed for flexibility, extensibility, portability, and maintainability but also maintains the central ideas in modern AMLs.




Comprehensive Compiler Design


Book Description

This book covers the various aspects of designing a language translator in depth. It includes some exercises for practice.




Algorithms for Optimization


Book Description

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introduction to optimization with a focus on practical algorithms. The book approaches optimization from an engineering perspective, where the objective is to design a system that optimizes a set of metrics subject to constraints. Readers will learn about computational approaches for a range of challenges, including searching high-dimensional spaces, handling problems where there are multiple competing objectives, and accommodating uncertainty in the metrics. Figures, examples, and exercises convey the intuition behind the mathematical approaches. The text provides concrete implementations in the Julia programming language. Topics covered include derivatives and their generalization to multiple dimensions; local descent and first- and second-order methods that inform local descent; stochastic methods, which introduce randomness into the optimization process; linear constrained optimization, when both the objective function and the constraints are linear; surrogate models, probabilistic surrogate models, and using probabilistic surrogate models to guide optimization; optimization under uncertainty; uncertainty propagation; expression optimization; and multidisciplinary design optimization. Appendixes offer an introduction to the Julia language, test functions for evaluating algorithm performance, and mathematical concepts used in the derivation and analysis of the optimization methods discussed in the text. The book can be used by advanced undergraduates and graduate students in mathematics, statistics, computer science, any engineering field, (including electrical engineering and aerospace engineering), and operations research, and as a reference for professionals.




Compiler Design


Book Description

This book addresses problems related with compiler such as language, grammar, parsing, code generation and code optimization. This book imparts the basic fundamental structure of compilers in the form of optimized programming code. The complex concepts such as top down parsing, bottom up parsing and syntax directed translation are discussed with the help of appropriate illustrations along with solutions. This book makes the readers decide, which programming language suits for designing optimized system software and products with respect to modern architecture and modern compilers.