Invariant Theory of Finite Groups


Book Description

The questions that have been at the center of invariant theory since the 19th century have revolved around the following themes: finiteness, computation, and special classes of invariants. This book begins with a survey of many concrete examples chosen from these themes in the algebraic, homological, and combinatorial context. In further chapters, the authors pick one or the other of these questions as a departure point and present the known answers, open problems, and methods and tools needed to obtain these answers. Chapter 2 deals with algebraic finiteness. Chapter 3 deals with combinatorial finiteness. Chapter 4 presents Noetherian finiteness. Chapter 5 addresses homological finiteness. Chapter 6 presents special classes of invariants, which deal with modular invariant theory and its particular problems and features. Chapter 7 collects results for special classes of invariants and coinvariants such as (pseudo) reflection groups and representations of low degree. If the ground field is finite, additional problems appear and are compensated for in part by the emergence of new tools. One of these is the Steenrod algebra, which the authors introduce in Chapter 8 to solve the inverse invariant theory problem, around which the authors have organized the last three chapters. The book contains numerous examples to illustrate the theory, often of more than passing interest, and an appendix on commutative graded algebra, which provides some of the required basic background. There is an extensive reference list to provide the reader with orientation to the vast literature.




Modular Invariant Theory


Book Description

This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group, a theory that is more complicated than the study of the classical non-modular case. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers—an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.







The Arcata Conference on Representations of Finite Groups, Part 2


Book Description

The papers in these proceedings of the 1986 Arcata Summer Institute bear witness to the extraordinarily vital and intense research in the representation theory of finite groups. The confluence of diverse mathematical disciplines has brought forth work of great scope and depth. Particularly striking is the influence of algebraic geometry and cohomology theory in the modular representation theory and the character theory of reductive groups over finite fields, and in the general modular representation theory of finite groups. The continuing developments in block theory and the general character theory of finite groups is noteworthy. The expository and research aspects of the Summer Institute are well represented by these papers.




Cohomology of Finite Groups


Book Description

The cohomology of groups has, since its beginnings in the 1920s and 1930s, been the stage for significant interaction between algebra and topology and has led to the creation of important new fields in mathematics, like homological algebra and algebraic K-theory. This is the first book to deal comprehensively with the cohomology of finite groups: it introduces the most important and useful algebraic and topological techniques, and describes the interplay of the subject with those of homotopy theory, representation theory and group actions. The combination of theory and examples, together with the techniques for computing the cohomology of important classes of groups including symmetric groups, alternating groups, finite groups of Lie type, and some of the sporadic simple groups, enable readers to acquire an in-depth understanding of group cohomology and its extensive applications.







Differential Geometry And Topology - Proceedings Of The Workshop


Book Description

This volume contains the courses and lectures given during the workshop on Differential Geometry and Topology held at Alghero, Italy, in June 1992.The main goal of this meeting was to offer an introduction in attractive areas of current research and to discuss some recent important achievements in both the fields. This is reflected in the present book which contains some introductory texts together with more specialized contributions.The topics covered in this volume include circle and sphere packings, 3-manifolds invariants and combinatorial presentations of manifolds, soliton theory and its applications in differential geometry, G-manifolds of low cohomogeneity, exotic differentiable structures on R4, conformal deformation of Riemannian manifolds and Riemannian geometry of algebraic manifolds.







Inverse Invariant Theory and Steenrod Operations


Book Description

This book is intended for researchers and graduate students in commutative algebra, algebraic topology and invariant theory.




Equivariant Cohomology of Configuration Spaces Mod 2


Book Description

This book gives a brief treatment of the equivariant cohomology of the classical configuration space F(R^d,n) from its beginnings to recent developments. This subject has been studied intensively, starting with the classical papers of Artin (1925/1947) on the theory of braids, and progressing through the work of Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol'd (1969). The focus of this book is on the mod 2 equivariant cohomology algebras of F(R^d,n), whose additive structure was described by Cohen (1976) and whose algebra structure was studied in an influential paper by Hung (1990). A detailed new proof of Hung's main theorem is given, however it is shown that some of the arguments given by him on the way to his result are incorrect, as are some of the intermediate results in his paper. This invalidates a paper by three of the authors, Blagojević, Lück and Ziegler (2016), who used a claimed intermediate result in order to derive lower bounds for the existence of k-regular and l-skew embeddings. Using the new proof of Hung's main theorem, new lower bounds for the existence of highly regular embeddings are obtained: Some of them agree with the previously claimed bounds, some are weaker. Assuming only a standard graduate background in algebraic topology, this book carefully guides the reader on the way into the subject. It is aimed at graduate students and researchers interested in the development of algebraic topology in its applications in geometry.