Collected Papers of Hans Rademacher


Book Description

These two volumes contain all the papers published by Hans Rademacher, either alone or as joint author, essentially in chronological order. Included also are a collection of published abstracts, a number of papers that appeared in institutes and seminars but are only now being formally published, and several problems posed and/or solved by Rademacher. The editor has provided notes for each paper, offering comments and making corrections. He has also contributed a biographical sketch. The earlier papers are on real variables, measurability, convergence factors, and Euler summability of series. This phase of Rademacher's work culminates in a paper of 1922, in which he introduced the systems of orthogonal functions now known as the Rademacher functions. After this, a new period in Rademacher's career began, and his major effort was devoted to the theory of functions of a complex variable and number theory. Some of his most important contributions were made in these fields. He perfected the sieve method and used it skillfully in the study of algebraic number fields; he studied the additive prime number theory of these fields; he generalized Goldbach's Problem; and he began his work on the theory of the Riemann zeta function, modular functions, and Dedekind sums (now often&-and justly&-called Dedekind-Rademacher sums). To this period also becomes what has become known as the Rademacher-Brauer formula. Rademacher came to the United States as a refugee in 1934. In the years that followed, he obtained some of his most important results in connection with the Fourier coefficients of modular forms of positive dimensions. His general method may be considered a modification and improvement of the Hardy-Ramanujan-Littlewood circle method. He also published additional papers on Dedekind-Rademacher sums (with A. Whiteman), general number theory (with H. S. Zuckerman), and modular functions (also with Zuckerman). During the last decade of his life&-the 1960s&-he continued his work on these problems and devoted considerable attention to general analysis&-especially harmonic analysis&-and to analytic number theory. All of the papers in Volume I and ten of those in Volume II are in German. One paper is in Hungarian. The volumes are part of the MIT Press series Mathematicians of Our Time (Gian-Carlo Rota, general editor).




Selected Papers


Book Description

This volume is a selection from the 281 published papers of Joseph Leonard Walsh, former US Naval Officer and professor at University of Maryland and Harvard University. The nine broad sections are ordered following the evolution of his work. Commentaries and discussions of subsequent development are appended to most of the sections. Also included is one of Walsh's most influential works, "A closed set of normal orthogonal function," which introduced what is now known as "Walsh Functions".










Collected Papers of Srinivasa Ramanujan


Book Description

The influence of Ramanujan on number theory is without parallel in mathematics. His papers, problems and letters have spawned a remarkable number of later results by many different mathematicians. Here, his 37 published papers, most of his first two and last letters to Hardy, the famous 58 problems submitted to the Journal of the Indian Mathematical Society, and the commentary of the original editors (Hardy, Seshu Aiyar and Wilson) are reprinted again, after having been unavailable for some time. In this, the third printing of Ramanujan's collected papers, Bruce Berndt provides an annotated guide to Ramanujan's work and to the mathematics it inspired over the last three-quarters of a century. The historical development of ideas is traced in the commentary and by citations to the copious references. The editor has done the mathematical world a tremendous service that few others would be qualified to do.




The Rademacher Legacy to Mathematics


Book Description

This book contains papers presented at the Hans Rademacher Centenary Conference, held at Pennsylvania State University in July 1992. The astonishing breadth of Rademacher's mathematical interests is well represented in this volume. The papers collected here range over such topics as modular forms, partitions and q$ series, Dedekind sums, and Ramanujan type identities. Rounding out the volume is the opening paper, which presents a biography of Rademacher. This volume is a fitting tribute to a remarkable mathematician whose work continues to influence mathematics today.




Analytic Number Theory


Book Description




Guide to Information Sources in Mathematics and Statistics


Book Description

This book is a reference for librarians, mathematicians, and statisticians involved in college and research level mathematics and statistics in the 21st century. We are in a time of transition in scholarly communications in mathematics, practices which have changed little for a hundred years are giving way to new modes of accessing information. Where journals, books, indexes and catalogs were once the physical representation of a good mathematics library, shelves have given way to computers, and users are often accessing information from remote places. Part I is a historical survey of the past 15 years tracking this huge transition in scholarly communications in mathematics. Part II of the book is the bibliography of resources recommended to support the disciplines of mathematics and statistics. These are grouped by type of material. Publication dates range from the 1800's onwards. Hundreds of electronic resources-some online, both dynamic and static, some in fixed media, are listed among the paper resources. Amazingly a majority of listed electronic resources are free.




Contributions to the Theory of Zeta-Functions


Book Description

This volume provides a systematic survey of almost all the equivalent assertions to the functional equations - zeta symmetry - which zeta-functions satisfy, thus streamlining previously published results on zeta-functions. The equivalent relations are given in the form of modular relations in Fox H-function series, which at present include all that have been considered as candidates for ingredients of a series. The results are presented in a clear and simple manner for readers to readily apply without much knowledge of zeta-functions. This volume aims to keep a record of the 150-year-old heritage starting from Riemann on zeta-functions, which are ubiquitous in all mathematical sciences, wherever there is a notion of the norm. It provides almost all possible equivalent relations to the zeta-functions without requiring a reader's deep knowledge on their definitions. This can be an ideal reference book for those studying zeta-functions.




Number Theory And Its Applications Ii


Book Description

The aim of the book is to give a smooth analytic continuation from basic subjects including linear algebra, group theory, Hilbert space theory, etc. to number theory. With plenty of practical examples and worked-out exercises, and the scope ranging from these basic subjects made applicable to number-theoretic settings to advanced number theory, this book can then be read without tears. It will be of immense help to the reader to acquire basic sound skills in number theory and its applications.Number theory used to be described as the queen of mathematics, that is, there is no practical use. However, with the development of computers and the security of internet communications, the importance of number theory has been exponentially increasing daily. The raison d'ĂȘtre of the present book in this situation is that it is extremely reader-friendly while keeping the rigor of serious mathematics and in-depth analysis of practical applications to various subjects including control theory and pseudo-random number generation. The use of operators is prevailing rather abundantly in anticipation of applications to electrical engineering, allowing the reader to master these skills without much difficulty. It also delivers a very smooth bridging between elementary subjects including linear algebra and group theory (and algebraic number theory) for the reader to be well-versed in an efficient and effortless way. One of the main features of the book is that it gives several different approaches to the same topic, helping the reader to gain deeper insight and comprehension. Even just browsing through the materials would be beneficial to the reader.