Collection of Papers on Geometry, Analysis and Mathematical Physics


Book Description

This volume is published in honor of Professor Gu Chaohao, a renowned mathematician and member of the Chinese Academy of Sciences, on the occasion of his 70th birthday and his 50th year of educational work. The subjects covered by this collection are closely related to differential geometry, partial differential equations and mathematical physics ? the major areas in which Professor Gu has received notable achievements. Many distinguished mathematicians all over the world contributed their papers to this collection. This collection also consists of ?Gu Chaohao and I? written by C N Yang, ?The academic career and accomplishment of Professor Gu Chaohao? by T T Li and ?List of publications of Professor Gu Chaohao?.




Analysis and Mathematical Physics


Book Description




Collection Of Papers On Geometry, Analysis And Mathematical Physics


Book Description

This volume is published in honor of Professor Gu Chaohao, a renowned mathematician and member of the Chinese Academy of Sciences, on the occasion of his 70th birthday and his 50th year of educational work. The subjects covered by this collection are closely related to differential geometry, partial differential equations and mathematical physics — the major areas in which Professor Gu has received notable achievements. Many distinguished mathematicians all over the world contributed their papers to this collection. This collection also consists of “Gu Chaohao and I” written by C N Yang, “The academic career and accomplishment of Professor Gu Chaohao” by T T Li and “List of publications of Professor Gu Chaohao”.




Discrete Integrable Systems


Book Description




Analysis, Geometry, and Modeling in Finance


Book Description

Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available.Through the problem of option pricing, th




Geometrical Methods of Mathematical Physics


Book Description

In recent years the methods of modern differential geometry have become of considerable importance in theoretical physics and have found application in relativity and cosmology, high-energy physics and field theory, thermodynamics, fluid dynamics and mechanics. This textbook provides an introduction to these methods - in particular Lie derivatives, Lie groups and differential forms - and covers their extensive applications to theoretical physics. The reader is assumed to have some familiarity with advanced calculus, linear algebra and a little elementary operator theory. The advanced physics undergraduate should therefore find the presentation quite accessible. This account will prove valuable for those with backgrounds in physics and applied mathematics who desire an introduction to the subject. Having studied the book, the reader will be able to comprehend research papers that use this mathematics and follow more advanced pure-mathematical expositions.




Analysis And Mathematical Physics


Book Description

This is a concise reference book on analysis and mathematical physics, leading readers from a foundation to advanced level understanding of the topic. This is the perfect text for graduate or PhD mathematical-science students looking for support in topics such as distributions, Fourier transforms and microlocal analysis, C* Algebras, value distribution of meromorphic functions, noncommutative differential geometry, differential geometry and mathematical physics, mathematical problems of general relativity, and special functions of mathematical physics.Analysis and Mathematical Physics is the sixth volume of the LTCC Advanced Mathematics Series. This series is the first to provide advanced introductions to mathematical science topics to advanced students of mathematics. Edited by the three joint heads of the London Taught Course Centre for PhD Students in the Mathematical Sciences (LTCC), each book supports readers in broadening their mathematical knowledge outside of their immediate research disciplines while also covering specialized key areas.




Trends in Complex Analysis, Differential Geometry, and Mathematical Physics


Book Description

The Sixth International Workshop on Complex Structures and Vector Fields was a continuation of the previous five workshops (1992, 1994, 1996, 1998, 2000) on similar research projects. This series of workshops aims at higher achievements in studies of new research subjects. The present volume will meet with the satisfaction of many readers.




Trends in Differential Geometry, Complex Analysis and Mathematical Physics


Book Description

A discrete model for Kähler magnetic fields on a complex hyperbolic space / T. Adachi -- Integrability condition on the boundary parameters of the asymmetric exclusion process and matrix product ansatz / B. Aneva -- Remarks on the double-complex Laplacian / L. Apostolova -- Generalizations of conjugate connections / O. Calin, H. Matsuzoe, J. Zhang -- Asymptotics of generalized value distribution for Herglotz functions / Y. T. Christodoulides -- Cyclic hyper-scalar systems / S. Dimiev, M. S. Marinov, Z. Zhelev -- Plane curves associated with integrable dynamical systems of the Frenet-Serret type / P. A. Djondjorov, V. M. Vassilev, I. M. Mladenov -- Relativistic strain and electromagnetic photon-like objects / S. Donev, M. Tashkova -- A construction of minimal surfaces in flat tori by swelling / N. Ejiri -- On NLS equations on BD.I symmetric spaces with constant boundary conditions / V. S. Gerdjikov, N. A. Kostov -- Orthogonal almost complex structures on S[symbol] x R[symbol] / H. Hashimoto, M. Ohashi -- Persistence of solutions for some integrable shallow water equations / D. Henry -- Some geometric properties and objects related to Bézier curves / M. J. Hristov -- Heisenberg relations in the general case / B. Z. Iliev -- Poisson structures of equations associated with groups of diffeomorphisms / R. I. Ivanov -- Hyperbolic Gauss maps and parallel surfaces in hyperbolic three-space / M. Kokubu -- On the lax pair for two and three wave interaction system / N. A. Kostov -- Mathematical outlook of fractals and chaos related to simple orthorhombic Ising-Onsager-Zhang lattices / J. Ławrynowicz, S. Marchiafava, M. Nowak-Kepczyk -- A characterization of Clifford minimal hypersurfaces of a sphere in terms of their geodesics / S. Maeda -- On the curvature properties of real time-like hypersurfaces of Kähler manifolds with Norden metric / M. Manev, M. Teofilova -- Some submanifolds of almost contact manifolds with Norden metric / G. Nakova -- A short note on the double-complex Laplace operator / P. Popivanov -- Monogenic, hypermonogenic and holomorphic Cliffordian functions - a survey / I. P. Ramadanoff -- On some classes of exact solutions of eikonal equation / Ł. T. Stepień -- Dirichlet property for tessellations of tiling-type 4 on a plane by congrent pentagons / Y. Takeo, T. Adachi -- Almost complex connections on almost complex manifolds with Norden metric / M. Teofilova -- Pseudo-boson coherent and Fock states / D. A. Trifonov -- New integrable equations of mKdV type / T. I. Valchev -- Integrable dynamical systems of the Frenet-Serret type / V. M. Vassilev, P. A. Djondjorov, I. M. Mladenov




Differential Geometry and Mathematical Physics


Book Description

Starting from an undergraduate level, this book systematically develops the basics of • Calculus on manifolds, vector bundles, vector fields and differential forms, • Lie groups and Lie group actions, • Linear symplectic algebra and symplectic geometry, • Hamiltonian systems, symmetries and reduction, integrable systems and Hamilton-Jacobi theory. The topics listed under the first item are relevant for virtually all areas of mathematical physics. The second and third items constitute the link between abstract calculus and the theory of Hamiltonian systems. The last item provides an introduction to various aspects of this theory, including Morse families, the Maslov class and caustics. The book guides the reader from elementary differential geometry to advanced topics in the theory of Hamiltonian systems with the aim of making current research literature accessible. The style is that of a mathematical textbook,with full proofs given in the text or as exercises. The material is illustrated by numerous detailed examples, some of which are taken up several times for demonstrating how the methods evolve and interact.