Handbook of Splines


Book Description

The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.




Mathematics for Large Scale Computing


Book Description

During recent years a great deal of interest has been devoted to large scale computing applications. This has occurred in great part because of the introduction of advanced high performance computer architectures. The book contains survey articles as well as chapters on specific research applications, development and analysis of numerical algorithms, and performance evaluation of algorithms on advanced architectures. The effect of specialized architectural features on the performance of large scale computation is also considered by several authors. Several areas of applications are represented, including the numerical solution of partial differential equations, iterative techniques for large structured problems, the numerical solution of boundary value problems for ordinary differential equations, numerical optimization, and numerical quadrature. Mathematical issues in computer architecture are also presented, including the description of grey codes for generalized hypercubes. The results presented in this volume give, in our opinion, a representative picture of today’s state of the art in several aspects of large scale computing.







Mesh Methods


Book Description

Mathematical models of various natural processes are described by differential equations, systems of partial differential equations and integral equations. In most cases, the exact solution to such problems cannot be determined; therefore, one has to use grid methods to calculate an approximate solution using high-performance computing systems. These methods include the finite element method, the finite difference method, the finite volume method and combined methods. In this Special Issue, we bring to your attention works on theoretical studies of grid methods for approximation, stability and convergence, as well as the results of numerical experiments confirming the effectiveness of the developed methods. Of particular interest are new methods for solving boundary value problems with singularities, the complex geometry of the domain boundary and nonlinear equations. A part of the articles is devoted to the analysis of numerical methods developed for calculating mathematical models in various fields of applied science and engineering applications. As a rule, the ideas of symmetry are present in the design schemes and make the process harmonious and efficient.




Advances in Reactor Computations


Book Description




Variational Methods in Geosciences


Book Description

The last few decades have seen a spectacular growth in the use of variational methods, one of the most classic and elegant methods in physical and mathematical sciences, as powerful tools of optimization and numerical analysis. The tremendous accumulation of information on the use of variational methods in the area of the geosciences, which includes meteorology, oceanography, hydrology, geophysics and seismology, indicated the need for the first symposium on Variational Methods in Geosciences to be organized and held in Norman on October 15-17, 1985. The value of this symposium was enhanced by the number of stimulating and informative papers presented.