Emissions, Combustion Dynamics, and Control of a Multiple Swirl Combustor


Book Description

To achieve single digit NOx emission from gas turbine combustors and prevent the combustion dynamics encountered in Lean Premixed Combustion, it is essential to understand the correlations among emission characteristics, combustion dynamics, and dynamics and characteristics of swirling flow field. The focus of this dissertation is to investigate the emission characteristics and combustion dynamics of multiple swirl dump combustors either in premixing or non-premixed combustion (e.g. Lean Direct Injection), and correlate these combustion characteristics (emissions, combustion instability and lean flammability) to the fluids dynamics (flow structures and its evolution). This study covers measurement of velocity flow field, temperature field, and combustion under effects of various parameters, including inlet flow Reynolds number, inlet air temperature, swirl configurations, downstream exhaust nozzle contraction ratios, length of mixing tube. These parameters are tested in both liquid and gaseous fuel combustions. Knowledge obtained through this comprehensive study is applied to passive and active controls for improving gas turbine combustion performance in the aid of novel sensor and actuator technologies. Emissions and combustion characteristics are shown closely related to the shape and size of central recirculation zone (CRZ), the mean and turbulence velocity and strain rate, and dynamics of large vortical structures. The passive controls, mostly geometry factors, affect the combustion characteristics and emissions through their influences on flow fields, and consequently temperature and radical fields. Air assist, which is used to adjust the momentum of fuel spray, is effective in reducing NOx and depress combustion oscillation without hurting LBO. Fuel distribution/split is also one important factor for achieving low NOx emission and control of combustion dynamics. The dynamics of combustion, including flame oscillations close to LBO and acoustic combustion instability, can be characterized by OH*/CH* radical oscillations and phase-locked chemiluminescence imaging. The periodic fluctuation of jet velocity and formation of large vortical structures within CRZ are responsible for combustion instability in multiple swirl combustors.




Combustion Instabilities in Gas Turbine


Book Description

The increasingly strict regulation for pollutant emissions has recently led engine manufacturers to develop combustors that meet various regulatory requirements. Lean-premixed combustion appears to be the most promising technology for practical systems at the present time. In lean-premixed combustion, the fuel and air are premixed upstream of the combustor to avoid the formation of stoichiometric regions. The combustor is operated with excess air to reduce the flame temperature; consequently, thermal NOx is virtually eliminated. Unsteady flow oscillations, also referred to as combustion instability, have emerged as a common problem, and hindered the development of lean-premixed combustors. These oscillations may reach sufficient amplitudes to interfere with engine operation, and in extreme cases, lead to failure of the system due to excessive structural vibration and heat transfer to the chamber. The book is organized in two parts: an extensive bibliographic review of combustion instabilities and the motivation of this work in part 1; and the study about a new diagnostic methodology for thermoacoustic instability detection and future control in part 2.




Gas Turbine Emissions


Book Description

The development of clean, sustainable energy systems is a preeminent issue in our time. Gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source.




Combustion Instabilities in Gas Turbine Engines


Book Description

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.







Vortex Combustor for Low NOx Emissions when Burning Lean Premixed High Hydrogen Content Fuel


Book Description

A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.




Structure, Stability and Emissions of Lean Direct Injection Combustion, Including a Novel Multi-point Ldi System for Nox Reduction


Book Description

Experimental research on lean direct injection (LDI) combustors for gas turbine applications is presented. LDI combustion is an alternative to lean premixed combustion which has the potential of equivalent reduction of oxides of nitrogen (NOx) emissions and of peak combustor exit temperatures, but without some drawbacks of premixed combustors, such as flashback and autoignition. Simultaneous observations of the velocity field and reaction zone of an LDI swirl-stabilized combustor with a mixing tube at atmospheric conditions, with the goal of studying the flame stabilization mechanism, are shown. The flame was consistently anchored at the shear layer formed by the high-speed reactants exiting the mixing tube and the low speed recirculation region. Individual image analysis of the location of the tip of the recirculation zone and tip of the reaction region confirmed previously observed trends, but showed that calculation of the distance between these two points for corresponding image pairs yields results no different than when calculated from random image pairs. This most likely indicates a lag in the anchoring of the flame to changes in the recirculation zone, coupled with significant stochastic variation. An alternate LDI approach, multi-point LDI (MLDI), is also tested experimentally. A single large fuel nozzle is replaced by multiple small fuel nozzles to improve atomization and reduce the total volume of the high-temperature, low velocity recirculation zones, reducing NOx formation. The combustor researched employs a novel staged approach to allow good performance across a wide range of conditions by using a combination of nozzle types optimized to various power settings. The combustor has three independent fuel circuits referenced as pilot, intermediate, and outer. Emissions measurements, OH* chemiluminescence imaging, and thermoacoustic instability studies were run in a pressurized combustion facility at pressures from 2.0 to 5.3 bar.Combustor performance was analyzed for three fuel staging configurations, using local equivalence ratio of the individual circuits as a predictive parameter. Pilot-only mode enabled combustor operation at very low overall equivalence ratios while limiting NOx formation in idle power settings due to its configuration approximating a rich-quench-lean combustor. Pilot and intermediate staging tests demonstrated the range of equivalence ratios that are effective in reducing NOx formation while keeping other pollutants in check; very low equivalence ratio results in high unburned hydrocarbon and carbon monoxide, while very high equivalence ratios result in a detrimental effect as more fuel is routed through the intermediate fuel circuit. Using all three fuel circuits simultaneously in high power operation resulted in very low NOx levels (emissions index at or below 0.5 g/kg), particularly when fuel distribution was such that local equivalence ratio was equal among all circuits. The observed NOx levels compared favorably with other MLDI designs which do not have the operational flexibility of the combustor tested. Thermoacoustic instabilities occurred in the MLDI combustor for some test conditions. The local equivalence ratio of the intermediate fuel circuit was found to be one of the major predictor of the onset of instabilities. Detailed analysis of a two-circuit instability (pilot and intermediate) is presented.




Experimental Evaluation of a Low Emissions, Variable Geometry, Small Gas Turbine Combustor


Book Description

The results of an on-engine evaluation of an ultra-low NOx, natural gas-fired combustor for a 200 kW gas turbine are presented. The combustor evaluated used lean-premixed combustion to reduce NOx emissions and variable geometry to extend the range over which low emissions were obtained. Test results showed that ultra-low NOx emissions could be achieved from full load down to approximately 50% load through the combination of lean-premixed combustion and variable primary zone airflow.