Book Description
Written by well-known scientists in the field with vast experience in teaching astrophotonics, this is the first book to bridge astronomy and photonics for the benefit of developing new astronomical instrumentation. The textbook is clearly structured and covers four main methods relevant to observational astronomy: adaptive optics, photometry, interferometry and spectroscopy. It follows a progressive didactical path in photonics, starting from fundamentals of wave- and micro-optics and developing step-by-step the formalisms required for the treatment of optical multilayers, fiber optics and diffraction/holographic gratings. This approach allows students with a physics/engineering background to learn about the problematic of observational astronomy, while, conversely, students of astronomy are exposed to topics in modern photonics. Each chapter is divided into three main sections devoted to the discussion of astronomical concepts required to size an instrument designed for the particular method, the photonic concepts that most suit that instrument, and an analysis of existing, related photonic instruments. A set of exercises and a bibliography complete each chapter. Appendices include a short review of fundamentals of wave optics and photon detectors, plus an overview of project design and management using a real-life example of an astronomical instrumentation project. With its review of the latest instrumentation and techniques, this is invaluable for graduate and post-graduate students in astronomy, physics and optical engineering.