Communication-Protocol-Based Filtering and Control of Networked Systems


Book Description

Communication-Protocol-Based Filtering and Control of Networked Systems is a self-contained treatment of the state of the art in communication-protocol-based filtering and control; recent advances in networked systems; and the potential for application in sensor networks. This book provides new concepts, new models and new methodologies with practical significance in control engineering and signal processing. The book first establishes signal-transmission models subject to different communication protocols and then develops new filter design techniques based on those models and preset requirements for filtering performance. The authors then extend this work to finite-horizon H-infinity control, ultimately bounded control and finite-horizon consensus control. The focus throughout is on three typical communications protocols: the round-robin, random-access and try-once-and-discard protocols, and the systems studied are drawn from a variety of classes, among them nonlinear systems, time-delayed and time-varying systems, multi-agent systems and complex networks. Readers are shown the latest techniques—recursive linear matrix inequalities, backward recursive difference equations, stochastic analysis and mapping methods. The unified framework for communication-protocol-based filtering and control for different networked systems established in the book will be of interest to academic researchers and practicing engineers working with communications and other signal-processing systems. Senior undergraduate and graduate students looking to increase their knowledge of current methods in control and signal processing of networked systems will also find this book valuable.




Filtering and Control of Wireless Networked Systems


Book Description

This self-contained book, written by leading experts, offers a cutting-edge, in-depth overview of the filtering and control of wireless networked systems. It addresses the energy constraint and filter/controller gain variation problems, and presents both the centralized and the distributed solutions. The first two chapters provide an introduction to networked control systems and basic information on system analysis. Chapters (3–6) then discuss the centralized filtering of wireless networked systems, presenting different approaches to deal with energy efficiency and filter/controller gain variation problems. The next part (chapters 7–10) explores the distributed filtering of wireless networked systems, addressing the main problems of energy constraint and filter gain variation. The final part (chapters 11–14) focuses on the distributed control of wireless networked systems. In view of the rapid deployment and development of wireless networked systems for communication and control applications, the book represents a timely contribution and provides valuable insights, useful methods and effective algorithms for the analysis and design of wireless networked control systems. It is a valuable resource for researchers in the control and communication communities




Networked Control Systems


Book Description

Networked Control Systems: Cloud Control and Secure Control explores new technological developments in networked control systems (NCS), including new techniques, such as event-triggered, secure and cloud control. It provides the fundamentals and underlying issues of networked control systems under normal operating environments and under cyberphysical attack. The book includes a critical examination of the principles of cloud computing, cloud control systems design, the available techniques of secure control design to NCS's under cyberphysical attack, along with strategies for resilient and secure control of cyberphysical systems. Smart grid infrastructures are also discussed, providing diagnosis methods to analyze and counteract impacts. Finally, a series of practical case studies are provided to cover a range of NCS's. This book is an essential resource for professionals and graduate students working in the fields of networked control systems, signal processing and distributed estimation. - Provides coverage of cloud-based approaches to control systems and secure control methodologies to protect cyberphysical systems against various types of malicious attacks - Provides an overview of control research literature and explores future developments and solutions - Includes case studies that offer solutions for issues with modeling, quantization, packet dropout, time delay and communication constraints




Cyberphysical Infrastructures in Power Systems


Book Description

In an uncertain and complex environment, to ensure secure and stable operations of large-scale power systems is one of the biggest challenges that power engineers have to address today. Traditionally, power system operations and decision-making in controls are based on power system computations of physical models describing the behavior of power systems. Largely, physical models are constructed according to some assumptions and simplifications, and such is the case with power system models. However, the complexity of power system stability problems, along with the system's inherent uncertainties and nonlinearities, can result in models that are impractical or inaccurate. This calls for adaptive or deep-learning algorithms to significantly improve current control schemes that solve decision and control problems. Cyberphysical Infrastructures in Power Systems: Architectures and Vulnerabilities provides an extensive overview of CPS concepts and infrastructures in power systems with a focus on the current state-of-the-art research in this field. Detailed classifications are pursued highlighting existing solutions, problems, and developments in this area. - Gathers the theoretical preliminaries and fundamental issues related to CPS architectures. - Provides coherent results in adopting control and communication methodologies to critically examine problems in various units within smart power systems and microgrid systems. - Presents advanced analysis under cyberphysical attacks and develops resilient control strategies to guarantee safe operation at various power levels.




Protocol-Based Sliding Mode Control


Book Description

This book discusses the Sliding Mode Control (SMC) problems of networked control systems (NCSs) under various communication protocols including static/dynamic/periodic event-triggered mechanism, and stochastic communication, Round-Robin, weighted try-once-discard, multiple-packet transmission, and the redundant channel transmission protocol. The super-twisting algorithm and the extended-state-observer-based SMC scheme are described in this book for suppressing chattering. Besides, the SMC designs for two-dimensional (1-D) and two-dimensional (2-D) NCSs are illustrated as well. Features: Captures recent advances of theories, techniques, and applications of networked sliding mode control from an engineering-oriented perspective. Includes new design ideas and optimization techniques of networked sliding mode control theory. Provides advanced tools to apply networked sliding mode control techniques in the practical applications. Discusses some new tools to the engineering applications while dealing with the model uncertainties and external disturbances. This book aims at Researchers and professionals in Control Systems, Computer Networks, Internet of Things, and Communication Systems.




Recursive Filtering for 2-D Shift-Varying Systems with Communication Constraints


Book Description

This book presents up-to-date research developments and novel methodologies regarding recursive filtering for 2-D shift-varying systems with various communication constraints. It investigates recursive filter/estimator design and performance analysis by a combination of intensive stochastic analysis, recursive Riccati-like equations, variance-constrained approach, and mathematical induction. Each chapter considers dynamics of the system, subtle design of filter gains, and effects of the communication constraints on filtering performance. Effectiveness of the derived theories and applicability of the developed filtering strategies are illustrated via simulation examples and practical insight. Features:- Covers recent advances of recursive filtering for 2-D shift-varying systems subjected to communication constraints from the engineering perspective. Includes the recursive filter design, resilience operation and performance analysis for the considered 2-D shift-varying systems. Captures the essence of the design for 2-D recursive filters. Develops a series of latest results about the robust Kalman filtering and protocol-based filtering. Analyzes recursive filter design and filtering performance for the considered systems. This book aims at graduate students and researchers in mechanical engineering, industrial engineering, communications networks, applied mathematics, robotics and control systems.




Control and Filtering of Fuzzy Systems Under Communication Channels


Book Description

This book systematically studies the feedback control and filtering problems for nonlinear plants with limited communication channels based on T-S fuzzy models. By fully considering different network-induced phenomena, such as signal quantizations, time-delays, data packet dropouts, communication protocols, cyber attacks, and so on, some significant strategies are provided for various performance analysis and different controller/filter synthesis of fuzzy systems. The event-triggered mechanism is also mentioned to save the communication resource. Moreover, some results are extended to the fault detection and fault-tolerant control. The book provides some new methodologies in analysis and synthesis of fuzzy systems under communication channels, and can serve as a valuable reference material for researchers wishing to explore the area of control and filtering of fuzzy systems and networked systems.




Tracking Control of Networked Systems via Sliding-Mode


Book Description

The book focuses on the research methods of networked control systems via sliding mode. The problems with network disturbances, network induced delay, out-of-sequence and packet loss, and network attacks are studied in detail. The content studied in this book is introduced in detail and is verified by simulation or experiment. It is especially suitable for readers who are interested in learning the control scheme of networked systems. This book can benefit researchers, engineers, and students in related fields such as electrical, control, automation, and cyber security.




Networked Nonlinear Stochastic Time-Varying Systems


Book Description

Networked Non-linear Stochastic Time-Varying Systems: Analysis and Synthesis copes with the filter design, fault estimation and reliable control problems for different classes of nonlinear stochastic time-varying systems with network-enhanced complexities. Divided into three parts, the book discusses the finite-horizon filtering, fault estimation and reliable control, and randomly occurring nonlinearities/uncertainties followed by designing of distributed state and fault estimators, and distributed filters. The third part includes problems of variance-constrained H∞ state estimation, partial-nodes-based state estimation and recursive filtering for nonlinear time-varying complex networks with randomly varying topologies, and random coupling strengths. Offers a comprehensive treatment of the topics related to Networked Nonlinear Stochastic Time-Varying Systems with rigorous math foundation and derivation Unifies existing and emerging concepts concerning control/filtering/estimation and distributed filtering Provides a series of latest results by drawing on the conventional theories of systems science, control engineering and signal processing Deal with practical engineering problems such as event triggered H∞ filtering, non-fragile distributed estimation, recursive filtering, set-membership filtering Demonstrates illustrative examples in each chapter to verify the correctness of the proposed results This book is aimed at engineers, mathematicians, scientists, and upper-level students in the fields of control engineering, signal processing, networked control systems, robotics, data analysis, and automation.




Analysis and Synthesis for Networked Multi-Rate Systems


Book Description

This book presents novel state estimation methods for several classes of networked multi-rate systems including state estimation methods for networked multi-rate systems with various complex networked-induced phenomena and communication protocols. The systems investigated include stochastic nonlinear systems, time-delay systems, linear repetitive processes, and artificial neural networks. The techniques used are mainly the Lyapunov stability theory, the optimal estimation theory, the lifting technique, and certain convex optimization method. Features Gives a systematic investigation of the state estimation of multi-rate systems Discusses results on state estimation problems under network-induced complexities Studies different kinds of multi-rate systems including multi-rate nonlinear systems, multi-rate neural networks, and multi-rate linear repetitive processes Explores network-enhanced complexities and communication protocols Includes case studies showing the applicability of developed estimation algorithms including practical examples like DC servo systems and continuous stirred tank reactor systems Analysis and Synthesis for Networked Multi-Rate Systems is aimed at graduate students and researchers in signal processing, control systems, and electrical engineering.