Community Energy Networks With Storage


Book Description

This book addresses the problem of building an optimal community energy network in a decentralized distributed energy context. The book introduces a few novel modeling frameworks to assist a single customer or a community of multiple end-user customers in building their optimal electricity system/network and operating their own local energy system. The content of the book is suitable for students, academics and industrial practitioners studying or working in the area of energy management and smart grid energy networks.




Self-healing Control Technology for Distribution Networks


Book Description

Systematically introduces self-healing control theory for distribution networks, rigorously supported by simulations and applications • A comprehensive introduction to self-healing control for distribution networks • Details the construction of self-healing control systems with simulations and applications • Provides key principles for new generation protective relay and network protection • Demonstrates how to monitor and manage system performance • Highlights practical implementation of self-healing control technologies, backed by rigorous research data and simulations




High Temperature Superconductors (HTS) for Energy Applications


Book Description

High temperature superconductors (HTS) offer many advantages through their application in electrical systems, including high efficiency performance and high throughput with low-electrical losses. While cryogenic cooling and precision materials manufacture is required to achieve this goal, cost reductions without significant performance loss are being achieved through the advanced design and development of HTS wires, cables and magnets, along with improvements in manufacturing methods. This book explores the fundamental principles, design and development of HTS materials and their practical applications in energy systems.Part one describes the fundamental science, engineering and development of particular HTS components such as wires and tapes, cables, coils and magnets and discusses the cryogenics and electromagnetic modelling of HTS systems and materials. Part two reviews the types of energy applications that HTS materials are used in, including fault current limiters, power cables and energy storage, as well as their application in rotating machinery for improved electrical efficiencies, and in fusion technologies and accelerator systems where HTS magnets are becoming essential enabling technologies.With its distinguished editor and international team of expert contributors, High temperature superconductors (HTS) for energy applications is an invaluable reference tool for anyone involved or interested in HTS materials and their application in energy systems, including materials scientists and electrical engineers, energy consultants, HTS materials manufacturers and designers, and researchers and academics in this field. - Discusses fundamental issues and developments of particular HTS components - Comprehensively reviews the design and development of HTS materials and then applications in energy systems - Reviews the use of HTS materials and cabling transmissions, fault alignment limiters, energy storage, generators and motors, fusion and accelerator




Polygeneration with Polystorage


Book Description

Polygeneration with Polystorage: For Energy and Chemicals addresses the problem of both traditional and dispersed generation with a broad, multidisciplinary perspective. As the first book to thoroughly focus on the topic of polygeneration, users will find the problem presented from different scientific and technical domains down to both macro and micro levels. Detailed analyses and state-of-the-art developments in specific fields are included, focusing on storage in conventional energy supply chains and demand-side renewable polygeneration systems, management advice and the necessary market mechanisms needed to support them. This reference is useful for academics and professionals in conventional and unconventional energy systems. - Includes an outlined framework towards polygeneration and polystorage down to both micro and macro levels - Contains fluid and continuous chapters that provide detailed analysis and a review of the state-of-the-art developments in specific fields - Addresses the wider global view of research advancement and potential in the role of polygeneration and polystorage in the move toward sustainability




The Power Makers' Challenge


Book Description

The Power Makers - the producers of our electricity - must meet the demands of their customers while also addressing the threat of climate change. There are widely differing views about solutions to electricity generation in an emission constrained world. Some see the problem as relatively straight forward, requiring deep cuts in emissions now by improving energy efficiency, energy conservation and using only renewable resources. Many electricity industry engineers and scientists see the problem as being much more involved. The Power Makers ’ Challenge: and the need for Fission Energy looks at why using only conventional renewable energy sources is not quite as simple as it seems. Following a general introduction to electricity and its distribution, the author quantifies the reductions needed in greenhouse gas emissions from the power sector in the face of ever increasing world demands for electricity. It provides some much needed background on the many energy sources available for producing electricity and discusses their advantages and limitations to meet both the emission reduction challenge and electricity demand. By analyzing the three main groups of energy sources: renewable energy, fossil fuels and fission energy (nuclear power), readers can assess the ability of each group to meet the challenge of both reducing emissions and maintaining reliable supply at least cost. It is written for both non-technical and technical readers.




Steady-State Operation, Disturbed Operation and Protection of Power Networks


Book Description

This Special Issue presents the latest state-of-the-art research on solid fuels technology with dedicated, focused research papers. There are a variety of topics to choose from among the seven published re-search works to bring you up to date with the current trends in academia and industry.




Operation of Distributed Energy Resources in Smart Distribution Networks


Book Description

Operation of Distributed Energy Resources in Smart Distribution Networks defines the barriers and challenges of smart distribution networks, ultimately proposing optimal solutions for addressing them. The book considers their use as an important part of future electrical power systems and their ability to improve the local flexibility and reliability of electrical systems. It carefully defines the concept as a radial network with a cluster of distributed energy generations, various types of loads, and energy storage systems. In addition, the book details how the huge penetration of distributed energy resources and the intermittent nature of renewable generations may cause system problems. Readers will find this to be an important resource that analyzes and introduces the features and problems of smart distribution networks from different aspects. - Integrates different types of elements, including electrical vehicles, demand response programs, and various renewable energy sources in distribution networks - Proposes optimal operational models for the short-term performance and scheduling of a distribution network - Discusses the uncertainties of renewable resources and intermittent load in the decision-making process for distribution networks




The Circular Economy


Book Description

"The Circular Economy: Principles, Philosophies, Science, and Modern Applications" offers a comprehensive exploration of the transformative power of the circular economy in reshaping industries, societies, and environmental practices worldwide. In this timely and insightful work, Ron Legarski, an expert in telecommunications, sustainability, and network infrastructure, presents a clear and actionable guide to understanding and implementing circular models across key sectors such as manufacturing, energy, agriculture, and telecommunications. As businesses, governments, and organizations face the urgent need to transition from linear to circular systems, this book provides the philosophical, scientific, and practical foundations needed to drive real change. Readers will gain insights into critical topics, including resource efficiency, waste reduction, closed-loop systems, and the role of emerging technologies such as Industry 4.0, AI, IoT, and smart grids in enabling the circular economy. Through real-world case studies, policy recommendations, and in-depth analysis, "The Circular Economy" bridges the gap between theory and practice, offering readers: A detailed exploration of the philosophical origins and scientific principles behind circular thinking. Insights into the role of standardization, global frameworks, and public-private partnerships in scaling circular practices. Strategies for transforming industries, including telecommunications, energy, construction, and agriculture, to operate within a circular model. An understanding of the economic, social, and environmental benefits of circular systems, including job creation, resource conservation, and climate change mitigation. Whether you are a business leader, policymaker, sustainability advocate, or student, this book serves as both an essential resource and a source of inspiration for building a future rooted in circularity. With a deep commitment to sustainability and innovation, Ron Legarski offers a compelling vision of how we can collectively shape a world where waste is minimized, resources are continually reused, and economic growth thrives without compromising the environment. "The Circular Economy: Principles, Philosophies, Science, and Modern Applications" is more than just a book—it is a roadmap for creating a sustainable, resilient, and prosperous future for industries and societies alike.




Small and Micro Combined Heat and Power (CHP) Systems


Book Description

Small and micro combined heat and power (CHP) systems are a form of cogeneration technology suitable for domestic and community buildings, commercial establishments and industrial facilities, as well as local heat networks. One of the benefits of using cogeneration plant is a vastly improved energy efficiency: in some cases achieving up to 80–90% systems efficiency, whereas small-scale electricity production is typically at well below 40% efficiency, using the same amount of fuel. This higher efficiency affords users greater energy security and increased long-term sustainability of energy resources, while lower overall emissions levels also contribute to an improved environmental performance.Small and micro combined heat and power (CHP) systems provides a systematic and comprehensive review of the technological and practical developments of small and micro CHP systems.Part one opens with reviews of small and micro CHP systems and their techno-economic and performance assessment, as well as their integration into distributed energy systems and their increasing utilisation of biomass fuels. Part two focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines, gas turbines and microturbines, Stirling engines, organic Rankine cycle process and fuel cell systems. Heat-activated cooling (i.e. trigeneration) technologies and energy storage systems, of importance to the regional/seasonal viability of this technology round out this section. Finally, part three covers the range of applications of small and micro CHP systems, from residential buildings and district heating, to commercial buildings and industrial applications, as well as reviewing the market deployment of this important technology.With its distinguished editor and international team of expert contributors, Small and micro combined heat and power (CHP) systems is an essential reference work for anyone involved or interested in the design, development, installation and optimisation of small and micro CHP systems. - Reviews small- and micro-CHP systems and their techno-economic and performance assessment - Explores integration into distributed energy systems and their increasing utilisation of biomass fuels - Focuses on the development of different types of CHP technology, including internal combustion and reciprocating engines




Integration of Alternative Sources of Energy


Book Description

A unique electrical engineering approach to alternative sources ofenergy Unlike other books that deal with alternative sources of energyfrom a mechanical point of view, Integration of Alternative Sourcesof Energy takes an electrical engineering perspective. Moreover,the authors examine the full spectrum of alternative and renewableenergy with the goal of developing viable methods of integratingenergy sources and storage efficiently. Readers become thoroughlyconversant with the principles, possibilities, and limits ofalternative and renewable energy. The book begins with a general introduction and then reviewsprinciples of thermodynamics. Next, the authors explore both commonand up-and-coming alternative energy sources, including hydro,wind, solar, photovoltaic, thermosolar, fuel cells, and biomass.Following that are discussions of microturbines and inductiongenerators, as well as a special chapter dedicated to energystorage systems. After setting forth the fundamentals, the authorsfocus on how to integrate the various energy sources for electricalpower production. Discussions related to system operation,maintenance, and management, as well as standards forinterconnection, are also set forth. Throughout the book, diagrams are provided to demonstrate theelectrical operation of all the systems that are presented. Inaddition, extensive use of examples helps readers better grasp howintegration of alternative energy sources can beaccomplished. The final chapter gives readers the opportunity to learn about theHOMER Micropower Optimization Model. This computer model, developedby the National Renewable Energy Laboratory (NREL), assists in thedesign of micropower systems and facilitates comparisons of powergeneration techniques. Readers can download the software from theNREL Web site. This book is a must-read for engineers, consultants, regulators,and environmentalists involved in energy production and delivery,helping them evaluate alternative energy sources and integrate theminto an efficient energy delivery system. It is also a superiortextbook for upper-level undergraduates and graduate students.