Compactifications, Configurations, and Cohomology


Book Description

This volume contains the proceedings of the Conference on Compactifications, Configurations, and Cohomology, held from October 22–24, 2021, at Northeastern University, Boston, MA. Some of the most active and fruitful mathematical research occurs at the interface of algebraic geometry, representation theory, and topology. Noteworthy examples include the study of compactifications in three specific settings—algebraic group actions, configuration spaces, and hyperplane arrangements. These three types of compactifications enjoy common structural features, including relations to root systems, combinatorial descriptions of cohomology rings, the appearance of iterated blow-ups, the geometry of normal crossing divisors, and connections to mirror symmetry in physics. On the other hand, these compactifications are often studied independently of one another. The articles focus on new and existing connections between the aforementioned three types of compactifications, thereby setting the stage for further research. It draws on the discipline-specific expertise of all contributors, and at the same time gives a unified, self-contained reference for compactifications and related constructions in different contexts.




Compactifications, Configurations, and Cohomology


Book Description

This volume contains the proceedings of the Conference on Compactifications, Configurations, and Cohomology, held from October 22-24, 2021, at Northeastern University, Boston, MA.Some of the most active and fruitful mathematical research occurs at the interface of algebraic geometry, representation theory, and topology. Noteworthy examples include the study of compactifications in three specific settings--algebraic group actions, configuration spaces, and hype.




Lecture Notes on Motivic Cohomology


Book Description

The notion of a motive is an elusive one, like its namesake "the motif" of Cezanne's impressionist method of painting. Its existence was first suggested by Grothendieck in 1964 as the underlying structure behind the myriad cohomology theories in Algebraic Geometry. We now know that there is a triangulated theory of motives, discovered by Vladimir Voevodsky, which suffices for the development of a satisfactory Motivic Cohomology theory. However, the existence of motives themselves remains conjectural. This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings such as Milnor K-theory, etale cohomology, and Chow groups. The book is divided into lectures, grouped in six parts. The first part presents the definition of Motivic Cohomology, based upon the notion of presheaves with transfers. Some elementary comparison theorems are given in this part. The theory of (etale, Nisnevich, and Zariski) sheaves with transfers is developed in parts two, three, and six, respectively. The theoretical core of the book is the fourth part, presenting the triangulated category of motives. Finally, the comparison with higher Chow groups is developed in part five. The lecture notes format is designed for the book to be read by an advanced graduate student or an expert in a related field. The lectures roughly correspond to one-hour lectures given by Voevodsky during the course he gave at the Institute for Advanced Study in Princeton on this subject in 1999-2000. In addition, many of the original proofs have been simplified and improved so that this book will also be a useful tool for research mathematicians. Information for our distributors: Titles in this series are copublished with the Clay Mathematics Institute (Cambridge, MA).




Smooth Compactifications of Locally Symmetric Varieties


Book Description

The new edition of this celebrated and long-unavailable book preserves the original book's content and structure and its unrivalled presentation of a universal method for the resolution of a class of singularities in algebraic geometry.




Geometry of String Theory Compactifications


Book Description

A unified perspective on new and advanced mathematical techniques used in string theory research for graduate students and researchers.




Compactifications of Symmetric and Locally Symmetric Spaces


Book Description

Introduces uniform constructions of most of the known compactifications of symmetric and locally symmetric spaces, with emphasis on their geometric and topological structures Relatively self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to analysis, number theory, algebraic geometry and algebraic topology




Geometry and Physics


Book Description

Nigel Hitchin is one of the world's foremost figures in the fields of differential and algebraic geometry and their relations with mathematical physics, and he has been Savilian Professor of Geometry at Oxford since 1997. Geometry and Physics: A Festschrift in honour of Nigel Hitchin contain the proceedings of the conferences held in September 2016 in Aarhus, Oxford, and Madrid to mark Nigel Hitchin's 70th birthday, and to honour his far-reaching contributions to geometry and mathematical physics. These texts contain 29 articles by contributors to the conference and other distinguished mathematicians working in related areas, including three Fields Medallists. The articles cover a broad range of topics in differential, algebraic and symplectic geometry, and also in mathematical physics. These volumes will be of interest to researchers and graduate students in geometry and mathematical physics.




Degeneration of Abelian Varieties


Book Description

A new and complete treatment of semi-abelian degenerations of abelian varieties, and their application to the construction of arithmetic compactifications of Siegel moduli space, with most of the results being published for the first time. Highlights of the book include a classification of semi-abelian schemes, construction of the toroidal and the minimal compactification over the integers, heights for abelian varieties over number fields, and Eichler integrals in several variables, together with a new approach to Siegel modular forms. A valuable source of reference for researchers and graduate students interested in algebraic geometry, Shimura varieties or diophantine geometry.







Modern Geometry


Book Description

This book contains a collection of survey articles of exciting new developments in geometry, written in tribute to Simon Donaldson to celebrate his 60th birthday. Reflecting the wide range of Donaldson's interests and influence, the papers range from algebraic geometry and topology through symplectic geometry and geometric analysis to mathematical physics. Their expository nature means the book acts as an invitation to the various topics described, while also giving a sense of the links between these different areas and the unity of modern geometry.