The Iron Pnictide Superconductors


Book Description

This book covers different aspects of the physics of iron-based superconductors ranging from the theoretical, the numerical and computational to the experimental ones. It starts from the basic theory modeling many-body physics in Fe-superconductors and other multi-orbital materials and reaches up to the magnetic and Cooper pair fluctuations and nematic order. Finally, it offers a comprehensive overview of the most recent advancements in the experimental investigations of iron based superconductors.




On the Properties of Novel Superconductors


Book Description

Since the discovery of superconductivity, a great number of theoretical and experimental efforts have been made to describe this new phase of matter that emerged in many body systems. In this regard, theoretical models have been presented; the most famous of which was the BCS theory that can only describe conventional superconductors. With the discovery of new class superconductors, the superconducting mechanism became a new challenge in the field of condensed matter physics. This unexpected discovery opened a new area in the history of superconductivity, and experimental researchers started trying to find new compounds in this class of superconductors. These superconductors are often characterized by the anisotropic character in the superconducting gap function with nodes along a certain direction in the momentum space. Since the pairing interaction has an important role in the superconducting gap structure, its determination is very important to explain the basic pairing mechanism.In this regard, this book includes valuable theoretical and experimental discussions about the properties of superconductors. Here you will find valuable research describing the properties of unconventional superconductors.







Phase Transitions in Materials


Book Description

Offering a fresh viewpoint on phase changes and the thermodynamics of materials, this textbook covers the thermodynamics and kinetics of the most important phase transitions in materials science, spanning classical metallurgy through to nanoscience and quantum phase transitions. Clear, concise and complete explanations rigorously address transitions from the atomic scale up, providing the quantitative concepts, analytical tools and methods needed to understand modern research in materials science. Topics are grouped according to complexity, ensuring that students have a solid grounding in core topics before they begin to tackle more advanced material, and are accompanied by numerous end-of-chapter problems. With explanations firmly rooted in the context of modern advances in electronic structure and statistical mechanics, and developed from classroom teaching, this book is the ideal companion for graduate students and researchers in materials science, condensed matter physics, solid state science and physical chemistry.




Phase Diagram and Magnetic Excitations of BaFe2-xNixAs2: A Neutron Scattering Study


Book Description

This book studies the structural, magnetic and electronic properties of, as well as magnetic excitations in, high-temperature BaFe2-xNixAs2 superconductors using neutron diffraction and neutron spectroscopic methods. It describes the precise determination of the phase diagram of BaFe2-xNixAs2, which demonstrates strong magnetoelastic coupling and avoided quantum criticality driven by short-range incommensurate antiferromagnetic order, showing cluster spin glass behavior. It also identifies strong nematic spin correlations in the tetragonal state of uniaxial strained BaFe2-xNixAs2. The nematic correlations have similar temperature and doping dependence as resistivity anisotropy in detwinned samples, which suggests that they are intimately connected. Lastly, it investigates doping evolution of magnetic excitations in overdoped BaFe2-xNixAs2 and discusses the links with superconductivity. This book includes detailed neutron scattering results on BaFe2-xNixAs2 and an introduction to neutron scattering techniques, making it a useful guide for readers pursuing related research.




Superconductivity Centennial


Book Description

This book covers the important contributions of the Chinese during the development of high-temperature superconductors (HTS). The study of Y-based HTS, which was the first to be reported internationally at a liquid nitrogen temperature above 90 K, has retained the world record for superconducting transition temperatures. The book covers the study of superconducting energy gap, microscopic electron non-uniformity, ARPES research, 'kinks' research, eHigh-Tᶜ. In order to provide a comprehensive introduction to the physical properties of condensed matter, this book also includes studies on the thermodynamic properties of high-temperature superconductors, low-temperature heat transport, and Raman spectroscopy. In addition, this book includes important topics in theoretical studies, including the study of the magnetic and superconductivity of iron-based materials, the non-diagonal long procedure in condensed quantum phases, and the creation of oxygen sites in the CuO₂ plane. Rotational fluctuations lead to the study of superconducting states. This book is suitable for researchers and graduate students in condensed matter physics, materials science, optics and other fields.







Bibliography


Book Description

By browsing about 10 000 000 scientific articles of over 200 major journals mainly in a 'cover to cover approach' some 200 000 publications were selected. The extracted data is part of the following fundamental material research fields: crystal structures (S), phase diagrams (also called constitution) (C) and the comprehensive field of intrinsic physical properties (P). This work has been done systematically starting with the literature going back to 1900. The above mentioned research field codes (S, C, P) as well as the chemical systems investigated in each publication were included in the present work. The aim of the Inorganic Substances Bibliography is to provide researchers with a comprehensive compilation of all up to now published scientific publications on inorganic systems in only three handy volumes.




Charge Dynamics in 122 Iron-Based Superconductors


Book Description

This thesis combines highly accurate optical spectroscopy data on the recently discovered iron-based high-temperature superconductors with an incisive theoretical analysis. Three outstanding results are reported: (1) The superconductivity-induced modification of the far-infrared conductivity of an iron arsenide with minimal chemical disorder is quantitatively described by means of a strong-coupling theory for spin fluctuation mediated Cooper pairing. The formalism developed in this thesis also describes prior spectroscopic data on more disordered compounds. (2) The same materials exhibit a sharp superconductivity-induced anomaly for photon energies around 2.5 eV, two orders of magnitude larger than the superconducting energy gap. The author provides a qualitative interpretation of this unprecedented observation, which is based on the multiband nature of the superconducting state. (3) The thesis also develops a comprehensive description of a superconducting, yet optically transparent iron chalcogenide compound. The author shows that this highly unusual behavior can be explained as a result of the nanoscopic coexistence of insulating and superconducting phases, and he uses a combination of two complementary experimental methods - scanning near-field optical microscopy and low-energy muon spin rotation - to directly image the phase coexistence and quantitatively determine the phase composition. These data have important implications for the interpretation of data from other experimental probes.




Handbook of Magnetism and Magnetic Materials


Book Description

This handbook presents a comprehensive survey of magnetism and magnetic materials. The dramatic advances in information technology and electromagnetic engineering make it necessary to systematically review the approved key knowledge and summarize the state of the art in this vast field within one seminal reference work. The book thus delivers up-to-date and well-structured information on a wealth of topics encompassing all fundamental aspects of the underlying physics and materials science, as well as advanced experimental methodology and applications. It features coverage of the host of fascinating and complex phenomena that arise from the use of magnetic fields in e.g. chemistry and biology. Edited by two internationally renowned scholars and featuring authored chapters from leading experts in the field, Springer’s Handbook of Magnetism and Magnetic Materials is an invaluable source of essential reference information for a broad audience of students, researchers, and magnetism professionals.