Compendium for Research in Mathematics Education


Book Description

This volume, a comprehensive survey and critical analysis of today's issues in mathematics education, distills research to build knowledge and capacity in the field. The compendium is a valuable new resource that provides the most comprehensive evidence about what is known about research in mathematics education. The 38 chapters present five sections that address research about (1) foundations, (2) methods, (3) mathematical processes and content, (4) students, teachers, and learning environments, and (5) futuristic issues. Each chapter offers a synthesis of research with an eye to the historical development of a research topic and, in particular, historical milestones of the research about the topic.




Compendium for Early Career Researchers in Mathematics Education


Book Description

The purpose of this Open Access compendium, written by experienced researchers in mathematics education, is to serve as a resource for early career researchers in furthering their knowledge of the state of the field and disseminating their research through publishing. To accomplish this, the book is split into four sections: Empirical Methods, Important Mathematics Education Themes, Academic Writing and Academic Publishing, and a section Looking Ahead. The chapters are based on workshops that were presented in the Early Career Researcher Day at the 13th International Congress on Mathematical Education (ICME-13). The combination of presentations on methodological approaches and theoretical perspectives shaping the field in mathematics education research, as well as the strong emphasis on academic writing and publishing, offered strong insight into the theoretical and empirical bases of research in mathematics education for early career researchers in this field. Based on these presentations, the book provides a state-of-the-art overview of important theories from mathematics education and the broad variety of empirical approaches currently widely used in mathematics education research. This compendium supports early career researchers in selecting adequate theoretical approaches and adopting the most appropriate methodological approaches for their own research. Furthermore, it helps early career researchers in mathematics education to avoid common pitfalls and problems while writing up their research and it provides them with an overview of the most important journals for research in mathematics education, helping them to select the right venue for publishing and disseminating their work.




Research in Education


Book Description







Connecting Mathematics and Mathematics Education


Book Description

This open access book features a selection of articles written by Erich Ch. Wittmann between 1984 to 2019, which shows how the “design science conception” has been continuously developed over a number of decades. The articles not only describe this conception in general terms, but also demonstrate various substantial learning environments that serve as typical examples. In terms of teacher education, the book provides clear information on how to combine (well-understood) mathematics and methods courses to benefit of teachers. The role of mathematics in mathematics education is often explicitly and implicitly reduced to the delivery of subject matter that then has to be selected and made palpable for students using methods imported from psychology, sociology, educational research and related disciplines. While these fields have made significant contributions to mathematics education in recent decades, it cannot be ignored that mathematics itself, if well understood, provides essential knowledge for teaching mathematics beyond the pure delivery of subject matter. For this purpose, mathematics has to be conceived of as an organism that is deeply rooted in elementary operations of the human mind, which can be seamlessly developed to higher and higher levels so that the full richness of problems of various degrees of difficulty, and different means of representation, problem-solving strategies, and forms of proof can be used in ways that are appropriate for the respective level. This view of mathematics is essential for designing learning environments and curricula, for conducting empirical studies on truly mathematical processes and also for implementing the findings of mathematics education in teacher education, where it is crucial to take systemic constraints into account.




Knowing and Teaching Elementary Mathematics


Book Description

Studies of teachers in the U.S. often document insufficient subject matter knowledge in mathematics. Yet, these studies give few examples of the knowledge teachers need to support teaching, particularly the kind of teaching demanded by recent reforms in mathematics education. Knowing and Teaching Elementary Mathematics describes the nature and development of the knowledge that elementary teachers need to become accomplished mathematics teachers, and suggests why such knowledge seems more common in China than in the United States, despite the fact that Chinese teachers have less formal education than their U.S. counterparts. The anniversary edition of this bestselling volume includes the original studies that compare U.S and Chinese elementary school teachers’ mathematical understanding and offers a powerful framework for grasping the mathematical content necessary to understand and develop the thinking of school children. Highlighting notable changes in the field and the author’s work, this new edition includes an updated preface, introduction, and key journal articles that frame and contextualize this seminal work.




Systems for Instructional Improvement


Book Description

In Systems for Instructional Improvement, Paul Cobb and his colleagues draw on their extensive research to propose a series of specific, empirically grounded recommendations that together constitute a theory of action for advancing instruction at scale. The authors outline the elements of a coherent instructional system; describe productive practices for school leaders in supporting teachers’ growth; and discuss the role of district leaders in developing school-level capacity for instructional improvement. Based on the findings of an eight-year research-practice partnership with four large urban districts investigating their efforts to enhance middle school math instruction, the authors seek to bridge the gap between the literature on improving teaching and learning and the literature on policy and leadership. They look at the entire education system and make recommendations on improvement efforts with a focus on student learning and teachers’ instructional vision. In particular, the authors offer insights on the interplay among various supports for teacher learning, including pullout professional development, coaching, collaborative inquiry, the most instructionally productive uses of principals’ time, and the tensions that tend to emerge at the district level. They provide a guide for district-level leaders in organizing their work to support significant teacher learning. Systems for Instructional Improvement provides an invaluable resource for school and district leaders, while outlining a clearly focused agenda for future research.







Science and Mathematics Education for 21st Century Citizens


Book Description

"This book addresses the challenges that face science and mathematics education if it is to be relevant to 21st century citizens, as well as the ways that outstanding specialists from several countries around the world think it should deal with those challenges. Starting with the issue of science and mathematics teacher education in a changing world, it moves on to deal with innovative approaches to teaching science and mathematics. It then discusses contemporary issues related to the role played by technology in science and mathematics education, the challenges of the STEM agenda, and ways of making science and mathematics education more inclusive. Finally, it focuses on assessment issues, as the success of science and mathematics education depends at least in part on the purposes for which, and ways in which, students' learning is assessed. There is a worldwide trend towards providing meaningful science and mathematics education to all children for the sake of literacy and numeracy development and a need to produce enough science and technology specialists. This trend and need, coupled with the concern raised by students' disengagement in these two knowledge areas and the role that technology may play in countering it, put increasingly high demands on teachers. As shown in this book, science and mathematics education may offer a unique contribution in developing responsible citizens by fostering skills required in order to assume wider responsibilities and roles, focusing on personal, social and environmental dimensions. For instance, it offers unique insights into how teachers can build on students' complicated and interconnected real-worlds to help them learn authentic and relevant science and mathematics. Additionally, the book highlights potential positive relationships between science and mathematics, which are often envisaged as having a conflicting relationship in school curricula. By uncovering the similarities between them, and by providing evidence that both areas deal with issues that are relevant for citizens' daily lives, the book explores ways of linking and giving coherence to science and mathematics knowledge as components of everyday life settings. It also provides directions for future research on the educational potential of interconnecting science and mathematics at the different educational levels. Therefore, this is a worthwhile book for researchers, teacher educators and schoolteachers. It covers theoretical perspectives, research-based approaches and practical applications that may make a difference in education that is relevant and inclusive for citizens in the 21st century"--