Complex Phenomena in Nanoscale Systems


Book Description

Nanoscale physics has become one of the rapidly developing areas of contemporary physics because of its direct relevance to newly emerging area, nanotechnologies. Nanoscale devices and quantum functional materials are usually constructed based on the results of fundamental studies on nanoscale physics. Therefore studying physical phenomena in nanosized systems is of importance for progressive development of nanotechnologies. In this context study of complex phenomena in such systems and using them for controlling purposes is of great practical importance. Namely, such studies are brought together in this book, which contains 27 papers on various aspects of nanoscale physics and nonlinear dynamics.




Condensed-Matter and Materials Physics


Book Description

The development of transistors, the integrated circuit, liquid-crystal displays, and even DVD players can be traced back to fundamental research pioneered in the field of condensed-matter and materials physics (CMPP). The United States has been a leader in the field, but that status is now in jeopardy. Condensed-Matter and Materials Physics, part of the Physics 2010 decadal survey project, assesses the present state of the field in the United States, examines possible directions for the 21st century, offers a set of scientific challenges for American researchers to tackle, and makes recommendations for effective spending of federal funds. This book maintains that the field of CMPP is certain to be principle to both scientific and economic advances over the next decade and the lack of an achievable plan would leave the United States behind. This book's discussion of the intellectual and technological challenges of the coming decade centers around six grand challenges concerning energy demand, the physics of life, information technology, nanotechnology, complex phenomena, and behavior far from equilibrium. Policy makers, university administrators, industry research and development executives dependent upon developments in CMPP, and scientists working in the field will find this book of interest.




Electrical Transport in Nanoscale Systems


Book Description

In recent years there has been a huge increase in the research and development of nanoscale science and technology. Central to the understanding of the properties of nanoscale structures is the modeling of electronic conduction through these systems. This graduate textbook provides an in-depth description of the transport phenomena relevant to systems of nanoscale dimensions. In this textbook the different theoretical approaches are critically discussed, with emphasis on their basic assumptions and approximations. The book also covers information content in the measurement of currents, the role of initial conditions in establishing a steady state, and the modern use of density-functional theory. Topics are introduced by simple physical arguments, with particular attention to the non-equilibrium statistical nature of electrical conduction, and followed by a detailed formal derivation. This textbook is ideal for graduate students in physics, chemistry, and electrical engineering.




Topics in Nanoscience - Part II: Quantized Structures, Nanoelectronics, Thin Films


Book Description

This introductory compendium teaches engineering students how the most common electronic sensors and actuators work. It distinguishes from other books by including the physical and chemical phenomena used as well as the features and specifications of many sensors and actuators. The useful reference text also contains an introductory chapter that deals with their specifications and classification, a chapter about sensor and actuator networks, and a special topic dealing with the fabrication of sensors and actuators using microelectromechanical systems techniques (sensors and actuators on a chip). A set of exercises and six laboratory projects are highlighted.




Engineering of Chemical Complexity


Book Description

This review volume, co-edited by Nobel laureate G Ertl, provides a broad overview on current studies in the understanding of design and control of complex chemical systems of various origins, on scales ranging from single molecules and nano-phenomena to macroscopic chemical reactors. Self-organizational behavior and the emergence of coherent collective dynamics in reaction diffusion systems, reactive soft matter and chemical networks are covered. Special attention is paid to the applications in molecular cell biology and to the problems of biological evolution, synthetic biology and design of artificial living cells. Starting with a detailed introduction on the history of research on complex chemical systems, its current state of the art and perspectives, the book comprises 19 chapters that survey the current progress in particular research fields. The reviews, prepared by leading international experts, yield together a fascinating picture of a rapidly developing research discipline that brings chemical engineering to new frontiers.




Nano- and Micro-Electromechanical Systems


Book Description

Society is approaching and advancing nano- and microtechnology from various angles of science and engineering. The need for further fundamental, applied, and experimental research is matched by the demand for quality references that capture the multidisciplinary and multifaceted nature of the science. Presenting cutting-edge information that is applicable to many fields, Nano- and Micro-Electromechanical Systems: Fundamentals of Nano and Microengineering, Second Edition builds the theoretical foundation for understanding, modeling, controlling, simulating, and designing nano- and microsystems. The book focuses on the fundamentals of nano- and microengineering and nano- and microtechnology. It emphasizes the multidisciplinary principles of NEMS and MEMS and practical applications of the basic theory in engineering practice and technology development. Significantly revised to reflect both fundamental and technological aspects, this second edition introduces the concepts, methods, techniques, and technologies needed to solve a wide variety of problems related to high-performance nano- and microsystems. The book is written in a textbook style and now includes homework problems, examples, and reference lists in every chapter, as well as a separate solutions manual. It is designed to satisfy the growing demands of undergraduate and graduate students, researchers, and professionals in the fields of nano- and microengineering, and to enable them to contribute to the nanotechnology revolution.




Raman Spectroscopy in Graphene Related Systems


Book Description

Raman spectroscopy is the inelastic scattering of light by matter. Being highly sensitive to the physical and chemical properties of materials, as well as to environmental effects that change these properties, Raman spectroscopy is now evolving into one of the most important tools for nanoscience and nanotechnology. In contrast to usual microscopyrelated techniques, the advantages of using light for nanoscience relate to both experimental and fundamental aspects.




Nano- and Microscale Drug Delivery Systems


Book Description

Nano- and Microscale Drug Delivery Systems: Design and Fabrication presents the developments that have taken place in recent years in the field of micro- and nanoscale drug delivery systems. Particular attention is assigned to the fabrication and design of drug delivery systems in order to i) reduce the side effects of therapeutic agents, ii) increase their pharmacological effect, and iii) improve aqueous solubility and chemical stability of different therapeutic agents. This book is designed to offer a cogent, concise overview of current scholarship in this important area of research through its focus on the characterization and fabrication of a variety of nanomaterials for drug delivery applications. It is an invaluable reference source for both biomaterials scientists and biomedical engineers who want to learn more about how nanomaterials are engineered and used in the design of drug delivery nanosystems. - Shows how micro- and nanomaterials can be engineered to create more effective drug delivery systems - Summarizes current nanotechnology research in the field of drug delivery systems - Explores the pros and cons of using particular nanomaterials as therapeutic agents - Serves as a valuable reference for both biomaterials scientists and biomedical engineers who want to learn more about how nanomaterials are engineered and used in the design of drug delivery nanosystems




Foundations of Complex Systems


Book Description

Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, how natural complexity acts as a source of inspiration for progress at the fundamental level.




Small Wonders, Endless Frontiers


Book Description

Nanoscale science and technology, often referred to as "nanoscience" or "nanotechnology," are science and engineering enabled by our relatively new ability to manipulate and characterize matter at the level of single atoms and small groups of atoms. This capability is the result of many developments in the last two decades of the 20th century, including inventions of scientific instruments like the scanning tunneling microscope. Using such tools, scientists and engineers have begun controlling the structure and properties of materials and systems at the scale of 10?9 meters, or 1/100,000 the width of a human hair. Scientists and engineers anticipate that nanoscale work will enable the development of materials and systems with dramatic new properties relevant to virtually every sector of the economy, such as medicine, telecommunications, and computers, and to areas of national interest such as homeland security. Indeed, early products based on nanoscale technology have already found their way into the marketplace and into defense applications. In 1996, as the tremendous scientific and economic potential of nanoscale science and technology was beginning to be recognized, a federal interagency working group formed to consider creation of a national nanotechnology initiative (NNI). As a result of this effort, around $1 billion has been directed toward NNI research since the start of FY 2001. At the request of officials in the White House National Economic Council and agencies that are participating in NNI, the National Research Council (NRC) agreed to review the NNI. The Committee for the Review of the National Nanotechnology Initiative was formed by the NRC and asked to consider topics such as the current research portfolio of the NNI, the suitability of federal investments, and interagency coordination efforts in this area.