Green Composites for Automotive Applications


Book Description

Green Composites for Automotive Applications presents cutting-edge, comprehensive reviews on the industrial applications of green composites. The book provides an elaborative assessment of both academic and industrial research on eco-design, durability issues, environmental performance, and future trends. Particular emphasis is placed on the processing and characterization of green composites, specific types of materials, such as thermoset and thermoplastic, nanocomposites, sandwich, and polymer biofoams. Additional sections cover lifecycle and risk analysis. As such, this book is an essential reference resource for R&D specialists working in materials science, automotive, chemical, and environmental engineering, as well as R&D managers in industry. - Contains contributions from leading experts in the field - Covers experimental, analytical and numerical analysis - Deals with most important automotive aspects - Provides a special section dedicated to lifecycle assessment




Advanced Composite Materials for Automotive Applications


Book Description

The automotive industry faces many challenges, including increased global competition, the need for higher-performance vehicles, a reduction in costs and tighter environmental and safety requirements. The materials used in automotive engineering play key roles in overcoming these issues: ultimately lighter materials mean lighter vehicles and lower emissions. Composites are being used increasingly in the automotive industry due to their strength, quality and light weight. Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness provides a comprehensive explanation of how advanced composite materials, including FRPs, reinforced thermoplastics, carbon-based composites and many others, are designed, processed and utilized in vehicles. It includes technical explanations of composite materials in vehicle design and analysis and covers all phases of composite design, modelling, testing and failure analysis. It also sheds light on the performance of existing materials including carbon composites and future developments in automotive material technology which work towards reducing the weight of the vehicle structure. Key features: Chapters written by world-renowned authors and experts in their own fields Includes detailed case studies and examples covering all aspects of composite materials and their application in the automotive industries Unique topic integration between the impact, crash, failure, damage, analysis and modelling of composites Presents the state of the art in composite materials and their application in the automotive industry Integrates theory and practice in the fields of composite materials and automotive engineering Considers energy efficiency and environmental implications Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness is a comprehensive reference for those working with composite materials in both academia and industry, and is also a useful source of information for those considering using composites in automotive applications in the future.




Biocomposite and Synthetic Composites for Automotive Applications


Book Description

Biocomposite and Synthetic Composites for Automotive Applications provides a detailed review of advanced macro and nanocomposite materials and structures, and discusses their use in the transport industry, specifically for automotive applications. This book covers materials selection, properties and performance, design solutions, and manufacturing techniques. A broad range of different material classes are reviewed with emphasis on advanced materials and new research pathways where composites can be derived from agricultural waste in the future, as well as the development and performance of hybrid composites. The book is an essential reference resource for those researching materials development and industrial design engineers who need a detailed understanding of materials usage in transport structures. Life Cycle Assessment (LCA) analysis of composite products in automotive applications is also discussed, and the effect of different fiber orientation on crash performance. Synthetic/natural fiber composites for aircraft engine fire-designated zones are linked to automotive applications. Additional chapters include the application and use of magnesium composites compared to biocomposites in the automotive industry; autonomous inspection and repair of aircraft composite structures via vortex robot technology and its application in automotive applications; composites in a three-wheeler (tuk tuk); and thermal properties of composites in automotive applications. - Covers advanced macro and nanocomposites used in automotive structures - Emphasizes materials selection, properties and performance, design solutions, and manufacturing techniques - Features case studies of successful applications of biocomposites in automotive structures




Automotive Plastics and Composites


Book Description

Automotive Plastics and Composites: Materials and Processing is an essential guide to the use of plastic and polymer composites in automotive applications, whether in the exterior, interior, under-the-hood, or powertrain, with a focus on materials, properties, and processing. The book begins by introducing plastics and polymers for the automotive industry, discussing polymer materials and structures, mechanical, chemical, and physical properties, rheology, and flow analysis. In the second part of the book, each chapter is dedicated to a category of material, and considers the manufacture, processing, properties, shrinkage, and possible applications, in each case. Two chapters on polymer processing provide detailed information on both closed-mold and open-mold processing. The final chapters explain other key aspects, such as recycling and sustainability, design principles, tooling, and future trends. This book is an ideal reference for plastics engineers, product designers, technicians, scientists, and R&D professionals who are looking to develop materials, components, or products for automotive applications. The book also intends to guide researchers, scientists, and advanced students in plastics engineering, polymer processing, and materials science and engineering. Analyzes mechanical, chemical, physical, and thermal properties, enabling the reader to select the appropriate material for specific applications Explains polymer processing, with thorough coverage of operations across both closed-mold and open-mold processing Provides systematic coverage of materials, including commodity and engineering thermoplastics, bio-based plastics, thermosets, composites, elastomeric polymers, and 3D-printed plastics




Composites for Automotive Applications


Book Description

Various factors in the automotive sector have combined to create a favourable climate for the development of materials and fabrication techniques for polymer-based composite body panels and structures. The cond104 in which composites are used within the automotive industry has been reviewed in this report and those materials and processes that are used in the fabrication of components and structures are described in detail. For this reason, this report is essential reading for the composites, plastics industries and the land transport/automotive sectors. An additional indexed section containing several hundred abstracts from the Rapra Polymer Library database gives useful references for further reading.




An Introduction to Automotive Composites


Book Description

This book is an upb306d and expanded version of the course notes for the Composite Awareness course run by the Warwick Manufacturing Group in 1998-1999. The book gives readers an appreciation of composites, materials properties, manufacturing technologies and the wider implications of using composites in the automotive sector. It will be useful for those already working with composites in automotive applications and for those who are considering using them in the future.




Advanced Materials in Automotive Engineering


Book Description

The automotive industry is under constant pressure to design vehicles capable of meeting increasingly demanding challenges such as improved fuel economy, enhanced safety and effective emission control. Drawing on the knowledge of leading experts, Advanced materials in automotive engineering explores the development, potential and impact of using such materials.Beginning with a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications, Advanced materials in automotive engineering goes on to consider nanostructured steel for automotive body structures, aluminium sheet and high pressure die-cast aluminium alloys for automotive applications, magnesium alloys for lightweight powertrains and automotive bodies, and polymer and composite moulding technologies. The final chapters then consider a range of design and manufacturing issues that need to be addressed when working with advanced materials, including the design of advanced automotive body structures and closures, technologies for reducing noise, vibration and harshness, joining systems, and the recycling of automotive materials.With its distinguished editor and international team of contributors, Advanced materials in automotive engineering is an invaluable guide for all those involved in the engineering, design or analysis of motor vehicle bodies and components, as well as all students of automotive design and engineering. - Explores the development, potential and impact of using advanced materials for improved fuel economy, enhanced safety and effective mission control in the automotive industry - Provides a comprehensive introduction to advanced materials for vehicle lightweighting and automotive applications - Covers a range of design ideas and manufacturing issues that arise when working with advanced materials, including technologies for reducing noise, vibration and harshness, and the recycling of automotive materials




Metal Matrix Composites


Book Description

Since the properties of MMCs can be directly designed "into" the material, they can fulfill all the demands set by design engineers. This book surveys the latest results and development possibilities for MMCs as engineering and functional materials, making it of utmost value to all materials scientists and engineers seeking in-depth background information on the potentials these materials have to offer in research, development and design engineering.




Materials, Design and Manufacturing for Lightweight Vehicles


Book Description

Research into the manufacture of lightweight automobiles is driven by the need to reduce fuel consumption to preserve dwindling hydrocarbon resources without compromising other attributes such as safety, performance, recyclability and cost. Materials, design and manufacturing for lightweight vehicles will make it easier for engineers to not only learn about the materials being considered for lightweight automobiles, but also to compare their characteristics and properties.Part one discusses materials for lightweight automotive structures with chapters on advanced steels for lightweight automotive structures, aluminium alloys, magnesium alloys for lightweight powertrains and automotive structures, thermoplastics and thermoplastic matrix composites and thermoset matrix composites for lightweight automotive structures. Part two reviews manufacturing and design of lightweight automotive structures covering topics such as manufacturing processes for light alloys, joining for lightweight vehicles, recycling and lifecycle issues and crashworthiness design for lightweight vehicles.With its distinguished editor and renowned team of contributors, Materials, design and manufacturing for lightweight vehicles is a standard reference for practicing engineers involved in the design and material selection for motor vehicle bodies and components as well as material scientists, environmental scientists, policy makers, car companies and automotive component manufacturers. - Provides a comprehensive analysis of the materials being used for the manufacture of lightweight vehicles whilst comparing characteristics and properties - Examines crashworthiness design issues for lightweight vehicles and further emphasises the development of lightweight vehicles without compromising safety considerations and performance - Explores the manufacturing process for light alloys including metal forming processes for automotive applications