Vortex Dominated Flows


Book Description

Honoring the contributions of one of the field's leading experts, Lu Ting, this indispensable volume contains important new results at the cutting edge of research. A wide variety of significant new analytical and numerical results in critical areas are presented, including point vortex dynamics, superconductor vortices, cavity flows, vortex breakdown, shock/vortex interaction, wake flows, magneto-hydrodynamics, rotary wake flows, and hypersonic vortex phenomena.The book will be invaluable for those interested in the state of the art of vortex dominated flows, both from a theoretical and applied perspective.Professor Lu Ting and Joe Keller have worked together for over 40 years. In their first joint work entitled ?Periodic vibrations of systems governed by nonlinear partial differential equations?, perturbation analysis and bifurcation theory were used to determine the frequencies and modes of vibration of various physical systems. The novelty was the application to partial differential equations of methods which, previously, had been used almost exclusively on ordinary differential equations. Professsor Lu Ting is an expert in both fluid dynamics and the use of matched asymptotic expansions. His physical insight into fluid flows has led the way to finding the appropriate mathematical simplications used in the solutions to many difficult flow problems.




Computational Fluid Dynamics Techniques


Book Description

First published in 1995. Routledge is an imprint of Taylor & Francis, an informa company.




Computation of a Delta-wing Roll-and-hold Maneuver


Book Description

This report presents computations of the flowfield around an 80 degree sweep delta wing undergoing a constant roll-rate maneuver from 0 to 45 degrees. The governing equations for the problem are the unsteady, three- dimensional Navier-Stokes equations. The equations are solved using the implicit, approximately-factored algorithm of Beam-Warming. Fixed roll angle results are also presented and compared with experimental measurements to demonstrate the ability of the numerical technique to accurately capture the flowfield around a rolled delta wing. The dynamic behaviors of the vortex position and strength, as well as their corresponding effect on surface pressure, lift and roll moment, are described. A simple, quasi-static explanation of these vortex behaviors based on effective angle-of-attack and sideslip angle is proposed ... Delta wing roll, Vortex dynamics, Vortical flow, Unsteady maneuver.




Studies of Vortex Dominated Flows


Book Description

From the astrophysical scale of a swirling spiral galaxy, through the geophysical scale of a hurricane, down to the subatomic scale of elementary particles, vortical motion and vortex dynamics have played a profound role in our understanding of the physical world. Kuchemann referred to vortex dynamics as "the sinews and muscles of fluid motion. " In order to update our understanding of vortex dominated flows, NASA Langley Research Center and the Institute for Computer Applications in Science and Engineering (ICASE) conducted a workshop during July 9-11, 1985. The subject was broadly divided into five overlapping topics vortex dynamics, vortex breakdown, massive separation, vortex shedding from sharp leading edges and conically separated flows. Some of the experts in each of these areas were invited to provide an overview of the subject. This volume is the proceedings of the workshop and contains the latest, theoretical, numerical, and experimental work in the above-mentioned areas. Leibovich, Widnall, Moore and Sirovich discussed topics on the fundamentals of vortex dynamics, while Keller and Hafez treated the problem of vortex break down phenomena; the contributions of Smith, Davis and LeBalleur were in the area of massive separation and inviscid-viscous interactions, while those of Cheng, Hoeijmakers and Munnan dealt with sharp-leading-edge vortex flows; and Fiddes and Marconi represented the category of conical separated flows.







Vortex Dominated Flows


Book Description

This monograph provides in-depth analyses of vortex dominated flows via matched and multiscale asymptotics, and demonstrates how insight gained through these analyses can be exploited in the construction of robust, efficient, and accurate numerical techniques. The book explores the dynamics of slender vortex filaments in detail, including fundamental derivations, compressible core structure, weakly non-linear limit regimes, and associated numerical methods. Similarly, the volume covers asymptotic analysis and computational techniques for weakly compressible flows involving vortex-generated sound and thermoacoustics. The book is addressed to both graduate students and researchers.




Computation of Unsteady Internal Flows


Book Description

Computation of Unsteady Internal Flows provides an in-depth understanding of unsteady flow modeling and algorithms. This understanding enables suitable algorithms and approaches for particular fields of application to be selected. In addition, the understanding of the behavior of algorithms gained allows practitioners to use them more safely in existing codes, enabling meaningful results to be produced more economically. Features of Computation of Unsteady Internal Flows: Specialized unsteady flow modeling algorithms, their traits, and practical tips relating to their use are presented. Case studies considering complex, practically significant problems are given. Source code and set-up files are included. Intended to be of a tutorial nature, these enable the reader to reproduce and extend case studies and to further explore algorithm performances. Mathematical derivations are used in a fashion that illuminates understanding of the physical implications of different numerical schemes. Physically intuitive mathematical concepts are used. New material on adaptive time stepping is included. £/LIST£ Audience: Researchers in both the academic and industrial areas who wish to gain in-depth knowledge of unsteady flow modeling will find Computation of Unsteady Internal Flows invaluable. It can also be used as a text in courses centered on computational fluid dynamics.




Parallel Computational Fluid Dynamics 2007


Book Description

At the 19th Annual Conference on Parallel Computational Fluid Dynamics held in Antalya, Turkey, in May 2007, the most recent developments and implementations of large-scale and grid computing were presented. This book, comprised of the invited and selected papers of this conference, details those advances, which are of particular interest to CFD and CFD-related communities. It also offers the results related to applications of various scientific and engineering problems involving flows and flow-related topics. Intended for CFD researchers and graduate students, this book is a state-of-the-art presentation of the relevant methodology and implementation techniques of large-scale computing.




Unsteady Navier-Stokes Solutions for a Low Aspect Ratio Delta Wing


Book Description

A numerical investigation of the flow field about a 76-degree leading edge sweep delta wing at 20.5 degree angle of attack is presented. The computational results are obtained using a Beam-Warming algorithm with a Newton-like subiteration procedure. For M = 0.2 and Re = 900,000 an unsteady flow field is obtained which is shown to be physical in nature. The unsteady behaviour is a result of the existence of small-scale vortical structures that are associated with a Kelvin-Helmholtz type instability of the shear layer emanating form the leading edge of the delta wing. The computed results show qualitative agreement with other experimental and numerical findings.