Computational Biomechanics


Book Description

Rapid developments have taken place in biological/biomedical measurement and imaging technologies as well as in computer analysis and information technologies. The increase in data obtained with such technologies invites the reader into a virtual world that represents realistic biological tissue or organ structures in digital form and allows for simulation and what is called “in silico medicine.” This volume is the third in a textbook series and covers both the basics of continuum mechanics of biosolids and biofluids and the theoretical core of computational methods for continuum mechanics analyses. Several biomechanics problems are provided for better understanding of computational modeling and analysis. Topics include the mechanics of solid and fluid bodies, fundamental characteristics of biosolids and biofluids, computational methods in biomechanics analysis/simulation, practical problems in orthopedic biomechanics, dental biomechanics, ophthalmic biomechanics, cardiovascular biomechanics, hemodynamics, cell mechanics, and model-, rule-, and image-based methods in computational biomechanics analysis and simulation. The book is an excellent resource for graduate school-level engineering students and young researchers in bioengineering and biomedicine.




Computational Biomechanics of the Musculoskeletal System


Book Description

Computational biomechanics is an emerging research field that seeks to understand the complex biomechanical behaviors of normal and pathological human joints to come up with new methods of orthopedic treatment and rehabilitation. Computational Biomechanics of the Musculoskeletal System collects the latest research and cutting-edge techniques used in computational biomechanics, focusing on orthopedic and rehabilitation engineering applications. The book covers state-of-the-art techniques and the latest research related to computational biomechanics, in particular finite element analysis and its potential applications in orthopedics and rehabilitation engineering. It offers a glimpse into the exciting potentials for computational modeling in medical research and biomechanical simulation. The book is organized according to anatomical location—foot and ankle, knee, hip, spine, and head and teeth. Each chapter details the scientific questions/medical problems addressed by modeling, basic anatomy of the body part, computational model development and techniques used, related experimental studies for model setup and validation, and clinical applications. Plenty of useful biomechanical information is provided for a variety of applications, especially for the optimal design of body support devices and prosthetic implants. This book is an excellent resource for engineering students and young researchers in bioengineering. Clinicians involved in orthopedics and rehabilitation engineering may find this work to be both informative and highly relevant to their clinical practice.




Computational Biomechanics for Medicine


Book Description

One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. The proposed workshop will provide an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. These are peer-reviewed proceedings of the workshop affiliated to a major international research conference (Medical Image Computing and Computer Assisted Intervention MICCAI 2010 in Beijing) dedicated to research in the field of medical image computing and computer assisted medical interventions. The list of subjects covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, medical robotics.




Computational Biomechanics


Book Description

The combination of readily available computing power and progress in numerical techniques has made nonlinear systems - the kind that only a few years ago were ignored as too complex - open to analysis for the first time. Now realistic models of living systems incorporating the nonlinear variation and anisotropic nature of physical properties can be solved numerically on modern computers to give realistically usable results. This has opened up new and exciting possibilities for the fusing of ideas from physiology and engineering in the burgeoning new field that is biomechanics. Computational Biomechanics presents pioneering work focusing on the areas of orthopedic and circulatory mechanics, using experimental results to confirm or improve the relevant mathematical models and parameters. Together with two companion volumes, Biomechanics: Functional Adaptation and Remodeling and the Data Book on Mechanical Properties of Living Cells, Tissues, and Organs, this monograph will prove invaluable to those working in fields ranging from medical science and clinical medicine to biomedical engineering and applied mechanics.




Computational Biomechanics for Medicine


Book Description

The Computational Biomechanics for Medicine titles provide an opportunity for specialists in computational biomechanics to present their latest methodologiesand advancements. Thisvolumecomprises twelve of the newest approaches and applications of computational biomechanics, from researchers in Australia, New Zealand, USA, France, Spain and Switzerland. Some of the interesting topics discussed are:real-time simulations; growth and remodelling of soft tissues; inverse and meshless solutions; medical image analysis; and patient-specific solid mechanics simulations. One of the greatest challenges facing the computational engineering community is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. We hope the research presented within this book series will contribute to overcoming this grand challenge.




Advances in Computational Approaches in Biomechanics


Book Description

With the advent of digital computers and rapidly developing computational techniques, computer simulations are widely used as predictive tools to supplement experimental techniques in engineering and technology. Computational biomechanics is a field where the movements of biological systems are assessed in the light of computer algorithms describing solid and fluid mechanical principles. This rapidly developing field must be constantly studied and updated as it continues to expand. Advances in Computational Approaches in Biomechanics examines the current trends and applications of intelligent computational techniques used to analyze a multitude of phenomena in the field of biomechanics and elaborates a series of sophisticated techniques used for computer simulation in solid mechanics, fluid mechanics, and fluid-solid interface. Covering a range of topics such as injury prevention, element analysis, and soft tissues, this publication is ideal for industry professionals, practitioners, researchers, academicians, instructors, and students.




Computational Bioengineering


Book Description

This book is a significant contribution to the state of the art in the field of computational bioengineering from the need for a living human database to meshless methods in biomechanics, from computational mechanobiology to the evaluation of stresses in hip prosthesis replacement, from lattice Boltzmann methods for analyzing blood flow to the analysis of fluid movement in long bones, among other interesting topics treated herein. Well-known international experts in bioengineering have contributed to the book, giving it a unique style and cutting-edge material for graduate students, academic researchers and design bioengineers, as well as those interested in getting a better understanding of such complex and fascinating human and living processes.




Biomechanics in Medicine, Sport and Biology


Book Description

This book contains fourteen chapters dealing with various aspects of the biomechanics of today. The topics covered are glimpses of what modern biomechanics can offer scientists, students, and the general public. We hope this book can be inspiring, helpful, and interesting for many readers who are not necessarily concerned with biomechanics daily.




Biomechanics of the Brain


Book Description

This new edition presents an authoritative account of the current state of brain biomechanics research for engineers, scientists and medical professionals. Since the first edition in 2011, this topic has unquestionably entered into the mainstream of biomechanical research. The book brings together leading scientists in the diverse fields of anatomy, neuroimaging, image-guided neurosurgery, brain injury, solid and fluid mechanics, mathematical modelling and computer simulation to paint an inclusive picture of the rapidly evolving field. Covering topics from brain anatomy and imaging to sophisticated methods of modeling brain injury and neurosurgery (including the most recent applications of biomechanics to treat epilepsy), to the cutting edge methods in analyzing cerebrospinal fluid and blood flow, this book is the comprehensive reference in the field. Experienced researchers as well as students will find this book useful.