Computational Conformal Mapping


Book Description

A textbook for a graduate class or for self-study by students of applied mathematics and engineering. Assumes at least a first course in complex analysis with emphasis on conformal mapping and Schwarz- Christoffel transformation, a first course in numerical analysis, a solid working competence with the Mathematica software, and some additional knowledge of programming languages. Introduces the theory and computation of conformal mappings of regions that are connected, simply or multiply, onto the unit disk or canonical regions in order to solve boundary value problems. Annotation copyrighted by Book News, Inc., Portland, OR




Computational Conformal Mapping


Book Description

This book evolved out of a graduate course given at the University of New Orleans in 1997. The class consisted of students from applied mathematics andengineering. Theyhadthebackgroundofatleastafirstcourseincomplex analysiswithemphasisonconformalmappingandSchwarz-Christoffeltrans formation, a firstcourse in numerical analysis, and good to excellent working knowledgeofMathematica* withadditionalknowledgeofsomeprogramming languages. Sincetheclasshad nobackground inIntegralEquations, thechap tersinvolvingintegralequationformulations werenotcoveredindetail, except for Symm's integral equation which appealed to a subsetofstudents who had some training in boundary element methods. Mathematica was mostly used for computations. In fact, it simplified numerical integration and other oper ations very significantly, which would have otherwise involved programming inFortran, C, orotherlanguageofchoice, ifclassical numericalmethods were attempted. Overview Exact solutions of boundary value problems for simple regions, such as cir cles, squares or annuli, can be determined with relative ease even where the boundaryconditionsarerathercomplicated. Green'sfunctionsforsuchsimple regions are known. However, for regions with complex structure the solution ofa boundary value problem often becomes more difficult, even for a simple problemsuchastheDirichletproblem. Oneapproachtosolvingthesedifficult problems is to conformally transform a given multiply connected region onto *Mathematica is a registered trade mark of Wolfram Research, Inc. ix x PREFACE simpler canonical regions. This will, however, result in change not only in the region and the associated boundary conditions but also in the governing differential equation. As compared to the simply connected regions, confor mal mapping ofmultiply connected regions suffers from severe limitations, one of which is the fact that equal connectivity ofregions is not a sufficient condition to effect a reciprocally connected map ofone region onto another.




Applied and Computational Complex Analysis, Volume 1


Book Description

Presents applications as well as the basic theory of analytic functions of one or several complex variables. The first volume discusses applications and basic theory of conformal mapping and the solution of algebraic and transcendental equations. Volume Two covers topics broadly connected with ordinary differental equations: special functions, integral transforms, asymptotics and continued fractions. Volume Three details discrete fourier analysis, cauchy integrals, construction of conformal maps, univalent functions, potential theory in the plane and polynomial expansions.




Computational Conformal Mapping


Book Description

A textbook for a graduate class or for self-study by students of applied mathematics and engineering. Assumes at least a first course in complex analysis with emphasis on conformal mapping and Schwarz- Christoffel transformation, a first course in numerical analysis, a solid working competence with the Mathematica software, and some additional knowledge of programming languages. Introduces the theory and computation of conformal mappings of regions that are connected, simply or multiply, onto the unit disk or canonical regions in order to solve boundary value problems. Annotation copyrighted by Book News, Inc., Portland, OR







Schwarz-Christoffel Mapping


Book Description

This book provides a comprehensive look at the Schwarz-Christoffel transformation, including its history and foundations, practical computation, common and less common variations, and its many applications. It is intended as an accessible resource for engineers, scientists, and applied mathematicians who may not have much prior experience with theoretical or computational conformal mapping techniques.







Conformal Geometry


Book Description

This book offers an essential overview of computational conformal geometry applied to fundamental problems in specific engineering fields. It introduces readers to conformal geometry theory and discusses implementation issues from an engineering perspective. The respective chapters explore fundamental problems in specific fields of application, and detail how computational conformal geometric methods can be used to solve them in a theoretically elegant and computationally efficient way. The fields covered include computer graphics, computer vision, geometric modeling, medical imaging, and wireless sensor networks. Each chapter concludes with a summary of the material covered and suggestions for further reading, and numerous illustrations and computational algorithms complement the text. The book draws on courses given by the authors at the University of Louisiana at Lafayette, the State University of New York at Stony Brook, and Tsinghua University, and will be of interest to senior undergraduates, graduates and researchers in computer science, applied mathematics, and engineering.




Handbook of Conformal Mappings and Applications


Book Description

The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem — for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the unit disk. The Handbook of Conformal Mappings and Applications is a compendium of at least all known conformal maps to date, with diagrams and description, and all possible applications in different scientific disciplines, such as: fluid flows, heat transfer, acoustics, electromagnetic fields as static fields in electricity and magnetism, various mathematical models and methods, including solutions of certain integral equations.




Numerical Conformal Mapping


Book Description

This is a unique monograph on numerical conformal mapping that gives a comprehensive account of the theoretical, computational and application aspects of the problems of determining conformal modules of quadrilaterals and of mapping conformally onto a rectangle. It contains a detailed study of the theory and application of a domain decomposition method for computing the modules and associated conformal mappings of elongated quadrilaterals, of the type that occur in engineering applications. The reader will find a highly useful and up-to-date survey of available numerical methods and associated computer software for conformal mapping. The book also highlights the crucial role that function theory plays in the development of numerical conformal mapping methods, and illustrates the theoretical insight that can be gained from the results of numerical experiments. This is a valuable resource for mathematicians, who are interested in numerical conformal mapping and wish to study some of the recent developments in the subject, and for engineers and scientists who use, or would like to use, conformal transformations and wish to find out more about the capabilities of modern numerical conformal mapping.