Computational Inorganic and Bioinorganic Chemistry


Book Description

Over the past several decades there have been major advances in our ability to computationally evaluate the electronic structure of inorganic molecules, particularly transition metal systems. This advancement is due to the Moore’s Law increase in computing power as well as the impact of density functional theory (DFT) and its implementation in commercial and freeware programs for quantum chemical calculations. Improved pure and hybrid density functionals are allowing DFT calculations with accuracy comparable to high-level Hartree-Fock treatments, and the results of these calculations can now be evaluated by experiment. When calculations are correlated to, and supported by, experimental data they can provide fundamental insight into electronic structure and its contributions to physical properties and chemical reactivity. This interplay continues to expand and contributes to both improved value of experimental results and improved accuracy of computational predictions. The purpose of this EIC Book is to provide state-of-the-art presentations of quantum mechanical and related methods and their applications, written by many of the leaders in the field. Part 1 of this volume focuses on methods, their background and implementation, and their use in describing bonding properties, energies, transition states and spectroscopic features. Part 2 focuses on applications in bioinorganic chemistry and Part 3 discusses inorganic chemistry, where electronic structure calculations have already had a major impact. This addition to the EIC Book series is of significant value to both experimentalists and theoreticians, and we anticipate that it will stimulate both further development of the methodology and its applications in the many interdisciplinary fields that comprise modern inorganic and bioinorganic chemistry. This volume is also available as part of Encyclopedia of Inorganic Chemistry, 5 Volume Set. This set combines all volumes published as EIC Books from 2007 to 2010, representing areas of key developments in the field of inorganic chemistry published in the Encyclopedia of Inorganic Chemistry. Find out more.




Practical Approaches to Biological Inorganic Chemistry


Book Description

Practical Approaches to Biological Inorganic Chemistry, Second Edition, reviews the use of spectroscopic and related analytical techniques to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique, including relevant theory, a clear explanation of what it is, how it works, and how the technique is actually used to evaluate biological structures. New chapters cover Raman Spectroscopy and Molecular Magnetochemistry, but all chapters have been updated to reflect the latest developments in discussed techniques. Practical examples, problems and many color figures are also included to illustrate key concepts. The book is designed for researchers and students who want to learn both the basics and more advanced aspects of key methods in biological inorganic chemistry. - Presents new chapters on Raman Spectroscopy and Molecular Magnetochemistry, as well as updated figures and content throughout - Includes color images throughout to enable easier visualization of molecular mechanisms and structures - Provides worked examples and problems to help illustrate and test the reader's understanding of each technique - Written by leading experts who use and teach the most important techniques used today to analyze complex biological structures




Theoretical and Computational Inorganic Chemistry


Book Description

The Advances in Inorganic Chemistry series present timely and informative summaries of the current progress in a variety of subject areas within inorganic chemistry, ranging from bio-inorganic to solid state studies. This acclaimed serial features reviews written by experts in the field and serves as an indispensable reference to advanced researchers. Each volume contains an index, and each chapter is fully referenced. - Features comprehensive reviews on the latest developments - Includes contributions from leading experts in the field - Serves as an indispensable reference to advanced researchers




Applications of Physical Methods to Inorganic and Bioinorganic Chemistry


Book Description

Modern spectroscopic and instrumental techniques are essential to the practice of inorganic and bioinorganic chemistry. This first volume in the new Wiley Encyclopedia of Inorganic Chemistry Methods and Applications Series provides a consistent and comprehensive description of the practical applicability of a large number of techniques to modern problems in inorganic and bioinorganic chemistry. The outcome is a text that provides invaluable guidance and advice for inorganic and bioinorganic chemists to select appropriate techniques, whilst acting as a source to the understanding of these methods. This volume is also available as part of Encyclopedia of Inorganic Chemistry, 5 Volume Set. This set combines all volumes published as EIC Books from 2007 to 2010, representing areas of key developments in the field of inorganic chemistry published in the Encyclopedia of Inorganic Chemistry. Find out more.




Spin States in Biochemistry and Inorganic Chemistry


Book Description

It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such as DFT, ligand-field theory and coupled cluster theory are discussed, and these methods are applied in studies throughout the book. Important spectroscopic techniques to determine spin states in transition metal complexes and proteins are explained, and the use of NMR for the analysis of spin densities is described. Topics covered include: DFT and ab initio wavefunction approaches to spin states Experimental techniques for determining spin states Molecular discovery in spin crossover Multiple spin state scenarios in organometallic reactivity and gas phase reactions Transition-metal complexes involving redox non-innocent ligands Polynuclear iron sulfur clusters Molecular magnetism NMR analysis of spin densities This book is a valuable reference for researchers working in bioinorganic and inorganic chemistry, computational chemistry, organometallic chemistry, catalysis, spin-crossover materials, materials science, biophysics and pharmaceutical chemistry.




Computational and Data-Driven Chemistry Using Artificial Intelligence


Book Description

Computational and Data-Driven Chemistry Using Artificial Intelligence: Volume 1: Fundamentals, Methods and Applications highlights fundamental knowledge and current developments in the field, giving readers insight into how these tools can be harnessed to enhance their own work. Offering the ability to process large or complex data-sets, compare molecular characteristics and behaviors, and help researchers design or identify new structures, Artificial Intelligence (AI) holds huge potential to revolutionize the future of chemistry. Volume 1 explores the fundamental knowledge and current methods being used to apply AI across a whole host of chemistry applications. Drawing on the knowledge of its expert team of global contributors, the book offers fascinating insight into this rapidly developing field and serves as a great resource for all those interested in exploring the opportunities afforded by the intersection of chemistry and AI in their own work. Part 1 provides foundational information on AI in chemistry, with an introduction to the field and guidance on database usage and statistical analysis to help support newcomers to the field. Part 2 then goes on to discuss approaches currently used to address problems in broad areas such as computational and theoretical chemistry; materials, synthetic and medicinal chemistry; crystallography, analytical chemistry, and spectroscopy. Finally, potential future trends in the field are discussed. - Provides an accessible introduction to the current state and future possibilities for AI in chemistry - Explores how computational chemistry methods and approaches can both enhance and be enhanced by AI - Highlights the interdisciplinary and broad applicability of AI tools across a wide range of chemistry fields




Applications of Density Functional Theory to Biological and Bioinorganic Chemistry


Book Description

The series Structure and Bonding publishes critical reviews on topics of research concerned with chemical structure and bonding. The scope of the series spans the entire Periodic Table and addresses structure and bonding issues associated with all of the elements. It also focuses attention on new and developing areas of modern structural and theoretical chemistry such as nanostructures, molecular electronics, designed molecular solids, surfaces, metal clusters and supramolecular structures. Physical and spectroscopic techniques used to determine, examine and model structures fall within the purview of Structure and Bonding to the extent that the focus is on the scientific results obtained and not on specialist information concerning the techniques themselves. Issues associated with the development of bonding models and generalizations that illuminate the reactivity pathways and rates of chemical processes are also relevant. The individual volumes in the series are thematic. The goal of each volume is to give the reader, whether at a university or in industry, a comprehensive overview of an area where new insights are emerging that are of interest to a larger scientific audience. Thus each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years should be presented using selected examples to illustrate the principles discussed. A description of the physical basis of the experimental techniques that have been used to provide the primary data may also be appropriate, if it has not been covered in detail elsewhere. The coverage need not be exhaustive in data, but should rather be conceptual, concentrating on the new principles being developed that will allow the reader, who is not a specialist in the area covered, to understand the data presented. Discussion of possible future research directions in the area is welcomed. Review articles for the individual volumes are invited by the volume editors. Readership: research scientists at universities or in industry, graduate students Special offer For all customers who have a standing order to the print version of Structure and Bonding, we offer free access to the electronic volumes of the Series published in the current year via SpringerLink.




Molecular Modeling of Inorganic Compounds


Book Description

In many branches of chemistry, Molecular Modeling is a well-established and powerful tool for the investigation of complex structures. The second completely revised and enlarged edition of this highly recognized book shows how this method can be successfully applied to inorganic and coordination compounds. The first part of the book gives a general introduction to Molecular Modeling, which will be of use for chemists in all areas. The second part discusses numerous carefully selected examples, chosen to illustrate the wide range of applicability of molecular modeling to metal complexes and the approaches being taken to dealing with some of the difficulties involved. While the general outline is similar to that of the first edition, many of the examples chosen for discussion reflect the changes of the past five years. In the third part, the reader learns how to apply Molecular Modeling to a new system and how to interpret the results. The accompanying software features 20 tutorial lessons based on examples from the literature and the book itself. The authors take special care to highlight possible pitfalls and offer advice on how to avoid them. Therefore, this book will be invaluable to everyone working in or entering the field.




Encyclopedia of Inorganic Chemistry, 10 Volume Set


Book Description

The ultimate resource on inorganic chemistry – new and completely revised, 10 years after publication of the First Edition The first edition of the Encyclopedia of Inorganic Chemistry treated the elements of the periodic system in alphabetical order, with multiple entries for key elements. The articles from the First Edition were written more than 10 years ago and all areas of inorganic chemistry have seen such a vigorous development that it was necessary to update most articles and to add a considerable number of new articles. The result of this major work is the proud Encylopedia of Inorganic Chemistry Second Edition (EIC-2). New – now includes colour 30% growth on previous edition – now 6,640 pages, published in 10 volumes EIC-2 continues to present articles in alphabetical order, but the content has been slightly reorganized to the following subject areas: Main Group Elements; Transition Metals and Coordination Chemistry; Organometallic Chemistry; Bioinorganic Chemistry; Solid State, Materials, Nanomaterials and Catalysis; and General Inorganic Chemistry, Theoretical and Computational Methods.




Advanced Structural Inorganic Chemistry


Book Description

A revised and updated English edition of a textbook based on teaching at the final year undergraduate and graduate level. It presents structure and bonding, generalizations of structural trends, crystallographic data, as well as highlights from the recent literature.