Computational Intelligence and Blockchain in Biomedical and Health Informatics


Book Description

Advancements in computational intelligence, which encompasses artificial intelligence, machine learning, and data analytics, have revolutionized the way we process and analyze biomedical and health data. These techniques offer novel approaches to understanding complex biological systems, improving disease diagnosis, optimizing treatment plans, and enhancing patient outcomes. Computational Intelligence and Blockchain in Biomedical and Health Informatics introduces the role of computational intelligence and blockchain in the biomedical and health informatics fields and provides a framework and summary of the various methods. The book emphasizes the role of advanced computational techniques and offers demonstrative examples throughout. Techniques to analyze the impacts on the biomedical and health Informatics domains are discussed along with major challenges in deployment. Rounding out the book are highlights of the transformative potential of computational intelligence and blockchain in addressing critical issues in healthcare from disease diagnosis and personalized medicine to health data management and interoperability along with two case studies. This book is highly beneficial to educators, researchers, and anyone involved with health data. Features: • Introduces the role of computational intelligence and blockchain in the biomedical and health informatics fields. • Provides a framework and a summary of various computational intelligence and blockchain methods. • Emphasizes the role of advanced computational techniques and offers demonstrative examples throughout. • Techniques to analyze the impact on biomedical and health informatics are discussed along with major challenges in deployment. • Highlights the transformative potential of computational intelligence and blockchain in addressing critical issues in healthcare from disease diagnosis and personalized medicine to health data management and interoperability.







Deep Learning Techniques for Biomedical and Health Informatics


Book Description

Deep Learning Techniques for Biomedical and Health Informatics provides readers with the state-of-the-art in deep learning-based methods for biomedical and health informatics. The book covers not only the best-performing methods, it also presents implementation methods. The book includes all the prerequisite methodologies in each chapter so that new researchers and practitioners will find it very useful. Chapters go from basic methodology to advanced methods, including detailed descriptions of proposed approaches and comprehensive critical discussions on experimental results and how they are applied to Biomedical Engineering, Electronic Health Records, and medical image processing. - Examines a wide range of Deep Learning applications for Biomedical Engineering and Health Informatics, including Deep Learning for drug discovery, clinical decision support systems, disease diagnosis, prediction and monitoring - Discusses Deep Learning applied to Electronic Health Records (EHR), including health data structures and management, deep patient similarity learning, natural language processing, and how to improve clinical decision-making - Provides detailed coverage of Deep Learning for medical image processing, including optimizing medical big data, brain image analysis, brain tumor segmentation in MRI imaging, and the future of biomedical image analysis




Application Of Omics, Ai And Blockchain In Bioinformatics Research


Book Description

With the increasing availability of omics data and mounting evidence of the usefulness of computational approaches to tackle multi-level data problems in bioinformatics and biomedical research in this post-genomics era, computational biology has been playing an increasingly important role in paving the way as basis for patient-centric healthcare.Two such areas are: (i) implementing AI algorithms supported by biomedical data would deliver significant benefits/improvements towards the goals of precision medicine (ii) blockchain technology will enable medical doctors to securely and privately build personal healthcare records, and identify the right therapeutic treatments and predict the progression of the diseases.A follow-up in the publication of our book Computation Methods with Applications in Bioinformatics Analysis (2017), topics in this volume include: clinical bioinformatics, omics-based data analysis, Artificial Intelligence (AI), blockchain, big data analytics, drug discovery, RNA-seq analysis, tensor decomposition and Boolean network.




Exploration of Artificial Intelligence and Blockchain Technology in Smart and Secure Healthcare


Book Description

This book offers in-depth reviews of different techniques and novel approaches of using blockchain and artificial intelligence in smart healthcare services. The volume brings 14 reviews and research articles written by academicians, researchers and industry professionals to give readers a current perspective of smart healthcare solutions for medical and public health services. The book starts with examples of how blockchain can be applied in healthcare services such as the care of osteoporosis patients and security. Several chapters review AI models for disease detection including breast cancer, colon cancer and anemia. The authors have included model design and parameters for the benefit of professionals who want to implement specific algorithms. Furthermore, the book also includes chapters on IoT frameworks for smart healthcare systems, giving readers a primer on how to utilize the technology in this sector. Additional use cases for machine learning for gesture learning. COVID-19 management, and sentiment analysis.




Big Data and Artificial Intelligence for Healthcare Applications


Book Description

This book covers a wide range of topics on the role of Artificial Intelligence, Machine Learning, and Big Data for healthcare applications and deals with the ethical issues and concerns associated with it. This book explores the applications in different areas of healthcare and highlights the current research. "Big Data and Artificial Intelligence for Healthcare Applications" covers healthcare big data analytics, mobile health and personalized medicine, clinical trial data management and presents how Artificial Intelligence can be used for early disease diagnosis prediction and prognosis. It also offers some case studies that describes the application of Artificial Intelligence and Machine Learning in healthcare. Researchers, healthcare professionals, data scientists, systems engineers, students, programmers, clinicians, and policymakers will find this book of interest.




Prospects of Blockchain Technology for Accelerating Scientific Advancement in Healthcare


Book Description

Health information about any patent is extremely critical. As there are many malicious users and misuses of health data, this information is not shared amongst health organizations due to security and privacy issues. Blockchain is being explored as a platform for securely exchanging healthcare data among the organizations in public domains, allowing doctors and practitioners to have access to more comprehensive health histories and in turn provide better care to patients. Prospects of Blockchain Technology for Accelerating Scientific Advancement in Healthcare disseminates the recent research findings on blockchain in healthcare and reviews current state-of-the-art blockchain applications in healthcare. This book also discusses various challenges faced by the healthcare community in securing healthcare data. Covering topics such as consensus mechanisms, smart healthcare systems, and supply chain management, it serves as an essential resource for healthcare professionals, computer scientists, information security professionals, data scientists, policymakers, researchers, and academicians.




Computational Analysis and Deep Learning for Medical Care


Book Description

The book details deep learning models like ANN, RNN, LSTM, in many industrial sectors such as transportation, healthcare, military, agriculture, with valid and effective results, which will help researchers find solutions to their deep learning research problems. We have entered the era of smart world devices, where robots or machines are being used in most applications to solve real-world problems. These smart machines/devices reduce the burden on doctors, which in turn make their lives easier and the lives of their patients better, thereby increasing patient longevity, which is the ultimate goal of computer vision. Therefore, the goal in writing this book is to attempt to provide complete information on reliable deep learning models required for e-healthcare applications. Ways in which deep learning can enhance healthcare images or text data for making useful decisions are discussed. Also presented are reliable deep learning models, such as neural networks, convolutional neural networks, backpropagation, and recurrent neural networks, which are increasingly being used in medical image processing, including for colorization of black and white X-ray images, automatic machine translation images, object classification in photographs/images (CT scans), character or useful generation (ECG), image caption generation, etc. Hence, reliable deep learning methods for the perception or production of better results are a necessity for highly effective e-healthcare applications. Currently, the most difficult data-related problem that needs to be solved concerns the rapid increase of data occurring each day via billions of smart devices. To address the growing amount of data in healthcare applications, challenges such as not having standard tools, efficient algorithms, and a sufficient number of skilled data scientists need to be overcome. Hence, there is growing interest in investigating deep learning models and their use in e-healthcare applications. Audience Researchers in artificial intelligence, big data, computer science, and electronic engineering, as well as industry engineers in transportation, healthcare, biomedicine, military, agriculture.




Smart Computational Intelligence in Biomedical and Health Informatics


Book Description

Smart Computational Intelligence in Biomedical and Health Informatics presents state-of-the-art innovations; research, design, and implementation of methodological and algorithmic solutions to data processing problems, including analysis of evolving trends in health informatics and computer-aided diagnosis. This book describes practical, applications-led research regarding the use of methods and devices in clinical diagnosis, disease prevention, and patient monitoring and management. It also covers simulation and modeling, measurement and control, analysis, information extraction and monitoring of physiological data in clinical medicine and the biological sciences. FEATURES Covers evolutionary approaches to solve optimization problems in biomedical engineering Discusses IoT, Cloud computing, and data analytics in healthcare informatics Provides computational intelligence-based solution for diagnosis of diseases Reviews modelling and simulations in designing of biomedical equipment Promotes machine learning-based approaches to improvements in biomedical engineering problems This book is for researchers, graduate students in healthcare, biomedical engineers, and those interested in health informatics, computational intelligence, and machine learning.




Digital Health Transformation with Blockchain and Artificial Intelligence


Book Description

The book Digital Health Transformation with Blockchain and Artificial Intelligence covers the global digital revolution in the field of healthcare sector. The population has been overcoming the COVID-19 period; therefore, we need to establish intelligent digital healthcare systems using various emerging technologies like Blockchain and Artificial Intelligence. Internet of Medical Things is the technological revolution that has included the element of "smartness" in the healthcare industry and also identifying, monitoring, and informing service providers about the patient’s clinical information with faster delivery of care services. This book highlights the important issues i.e. (a) How Internet of things can be integrated with the healthcare ecosystem for better diagnostics, monitoring, and treatment of the patients, (b) Artificial Intelligence for predictive and preventive healthcare systems, (c) Blockchain for managing healthcare data to provide transparency, security, and distributed storage, and (d) Effective remote diagnostics and telemedicine approach for developing smart care. The book encompasses chapters belong to the blockchain, Artificial Intelligence, and Big health data technologies. Features: Blockchain and internet of things in healthcare systems Secure Digital Health Data Management in Internet of Things Public Perception towards AI-Driven Healthcare Security, privacy issues and challenges in adoption of smart digital healthcare Big data analytics and Internet of things in the pandemic era Clinical challenges for digital health revolution Artificial intelligence for advanced healthcare Future Trajectory of Healthcare with Artificial Intelligence 9 Parkinson disease pre-diagnosis using smart technologies Emerging technologies to combat the COVID-19 Machine Learning and Internet of Things in Digital Health Transformation Effective Remote Healthcare and Telemedicine Approaches Legal implication of blockchain technology in public health This Book on "Digital Health Transformation with Blockchain and Artificial Intelligence" aims at promoting and facilitating exchanges of research knowledge and findings across different disciplines on the design and investigation of secured healthcare data analytics. It can also be used as a textbook for a Masters course in security and biomedical engineering. This book will also present new methods for the medical data analytics, blockchain technology, and diagnosis of different diseases to improve the quality of life in general, and better integration into digital healthcare.