Computational Intelligence Based on Lattice Theory


Book Description

This eighteen-chapter book presents the latest applications of lattice theory in Computational Intelligence (CI). The book focuses on neural computation, mathematical morphology, machine learning, and (fuzzy) inference/logic. The book comes out of a special session held during the World Council for Curriculum and Instruction World Conference (WCCI 2006). The articles presented here demonstrate how lattice theory may suggest viable alternatives in practical clustering, classification, pattern analysis, and regression applications.




Towards a Unified Modeling and Knowledge-Representation based on Lattice Theory


Book Description

This research monograph proposes a unified, cross-fertilizing approach for knowledge-representation and modeling based on lattice theory. The emphasis is on clustering, classification, and regression applications. It presents novel tools and useful perspectives for effective pattern classification. The material is multi-disciplinary based on on-going research published in major scientific journals and conferences.




Introduction to Lattice Algebra


Book Description

Lattice theory extends into virtually every branch of mathematics, ranging from measure theory and convex geometry to probability theory and topology. A more recent development has been the rapid escalation of employing lattice theory for various applications outside the domain of pure mathematics. These applications range from electronic communication theory and gate array devices that implement Boolean logic to artificial intelligence and computer science in general. Introduction to Lattice Algebra: With Applications in AI, Pattern Recognition, Image Analysis, and Biomimetic Neural Networks lays emphasis on two subjects, the first being lattice algebra and the second the practical applications of that algebra. This textbook is intended to be used for a special topics course in artificial intelligence with a focus on pattern recognition, multispectral image analysis, and biomimetic artificial neural networks. The book is self-contained and – depending on the student’s major – can be used for a senior undergraduate level or first-year graduate level course. The book is also an ideal self-study guide for researchers and professionals in the above-mentioned disciplines. Features Filled with instructive examples and exercises to help build understanding Suitable for researchers, professionals and students, both in mathematics and computer science Contains numerous exercises.




Computational Intelligence in Decision and Control


Book Description

FLINS, originally an acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended to Computational Intelligence for applied research. The contributions to the eighth edition in the series of FLINS conferences cover state-of-the-art research, development, and technology for computational intelligence systems in general, and for intelligent decision and control in particular.




Computational Intelligence In Decision And Control - Proceedings Of The 8th International Flins Conference


Book Description

FLINS, originally an acronym for Fuzzy Logic and Intelligent Technologies in Nuclear Science, is now extended to Computational Intelligence for applied research. The contributions to the eighth edition in the series of FLINS conferences cover state-of-the-art research, development, and technology for computational intelligence systems in general, and for intelligent decision and control in particular.




Introduction to Lattice Theory with Computer Science Applications


Book Description

A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.




Computational Intelligence in Reliability Engineering


Book Description

This volume includes chapters presenting applications of different metaheuristics in reliability engineering, including ant colony optimization, great deluge algorithm, cross-entropy method and particle swarm optimization. It also presents chapters devoted to cellular automata and support vector machines, and applications of artificial neural networks, a powerful adaptive technique that can be used for learning, prediction and optimization. Several chapters describe aspects of imprecise reliability and applications of fuzzy and vague set theory.




Applications of Hyperstructure Theory


Book Description

This book presents some of the numerous applications of hyperstructures, especially those that were found and studied in the last fifteen years. There are applications to the following subjects: 1) geometry; 2) hypergraphs; 3) binary relations; 4) lattices; 5) fuzzy sets and rough sets; 6) automata; 7) cryptography; 8) median algebras, relation algebras; 9) combinatorics; 10) codes; 11) artificial intelligence; 12) probabilities. Audience: Graduate students and researchers.




Advanced Intelligent Paradigms in Computer Games


Book Description

This book explores all the latest research in the area of advanced intelligent paradigms in computer games. It presents a sample of the most recent research concerning the application of computational intelligence techniques and internet technology in computer games. The contents include: COMMONS GAME in intelligent environment; adaptive generation of dilemma-based interactive narratives; computational intelligence in racing games; evolutionary algorithms for board game players with domain knowledge; electronic market games; EVE’s entropy; and capturing player enjoyment in computer games.




Advances in Intelligent and Distributed Computing


Book Description

This book presents the proceedings of the 1st International Symposium on Intelligent and Distributed Computing, IDC 2007, held in Craiova, Romania, October 2007. Coverage includes: autonomous and adaptive computing; data mining and knowledge discovery; distributed problem solving and decision making; e-business, e-health and e-learning; genetic algorithms; image processing; information retrieval; intelligence in mobile and ubiquitous computing.