Computational Mechanics with Neural Networks


Book Description

This book shows how neural networks are applied to computational mechanics. Part I presents the fundamentals of neural networks and other machine learning method in computational mechanics. Part II highlights the applications of neural networks to a variety of problems of computational mechanics. The final chapter gives perspectives to the applications of the deep learning to computational mechanics.




Deep Learning in Computational Mechanics


Book Description

This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature’s evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.




Machine Learning, Low-Rank Approximations and Reduced Order Modeling in Computational Mechanics


Book Description

The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics.




Statistical Mechanics of Neural Networks


Book Description

This book highlights a comprehensive introduction to the fundamental statistical mechanics underneath the inner workings of neural networks. The book discusses in details important concepts and techniques including the cavity method, the mean-field theory, replica techniques, the Nishimori condition, variational methods, the dynamical mean-field theory, unsupervised learning, associative memory models, perceptron models, the chaos theory of recurrent neural networks, and eigen-spectrums of neural networks, walking new learners through the theories and must-have skillsets to understand and use neural networks. The book focuses on quantitative frameworks of neural network models where the underlying mechanisms can be precisely isolated by physics of mathematical beauty and theoretical predictions. It is a good reference for students, researchers, and practitioners in the area of neural networks.




Computational Mechanics


Book Description

Computational Mechanics in solids, structures and coupled problems in engineering is today a mature science with applications to major industrial designs. This book reflects the state of art and it is written by some of the world leading authorities in this field, addressing such topics as: design and topology optimisation, inverse engineering, multibody dynamics, non-linear and railway dynamics, non-linear and textile composites, sandwich structures, uncertainty and reliability of structures, micromechanics of biological materials, computational geometry, multiscale strategies, discrete and mesh free elements, hybrid crack element, adaptive mesh generation, neural networks, structural model validation, vibro-acoustics, active aeroelastic structures, shells with incompressible flows, fluid-structure interaction, aeroelasticity, fluid-saturated and damage porous media and ceramics, high porosity solids, multiphase viscous porous material and masonry. This book contains the edited version of some Plenary and Keynote Lectures presented at the III European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering (ECCM-2006), held in the National Laboratory of Civil Engineering, Lisbon, Portugal, 5th - 8th June 2006.




Computational Mechanics with Deep Learning


Book Description

This book is intended for students, engineers, and researchers interested in both computational mechanics and deep learning. It presents the mathematical and computational foundations of Deep Learning with detailed mathematical formulas in an easy-to-understand manner. It also discusses various applications of Deep Learning in Computational Mechanics, with detailed explanations of the Computational Mechanics fundamentals selected there. Sample programs are included for the reader to try out in practice. This book is therefore useful for a wide range of readers interested in computational mechanics and deep learning.




Computational Structural Mechanics


Book Description

Computational Structural Mechanics: Static and Dynamic Behaviors provides a cutting-edge treatment of functionally graded materials and the computational methods and solutions of FG static and vibration problems of plates. Using the Rayleigh-Ritz method, static and dynamic problems related to behavior of FG rectangular, Levy, elliptic, skew and annular plates are discussed in detail. A thorough review of the latest research results, computational methods and applications of FG technology make this an essential resource for researchers in academia and industry. - Explains application-oriented treatments of the functionally graded materials used in industry - Addresses relevant algorithms and key computational techniques - Provides numerical solutions of static and vibration problems associated with functionally graded beams and plates of different geometries




Tensor Voting


Book Description

This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several problems can be posed as the organization of the inputs into salient perceptual structures, which are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources.




Data-Driven Science and Engineering


Book Description

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.




Nonlinear Control and Analytical Mechanics


Book Description

During the past decade we have had to confront a series of control design prob lems - involving, primarily, multibody electro-mechanical systems - in which nonlinearity plays an essential role. Fortunately, the geometric theory of non linear control system analysis progressed substantially during the 1980s and 90s, providing crucial conceptual tools that addressed many of our needs. However, as any control systems engineer can attest, issues of modeling, computation, and implementation quickly become the dominant concerns in practice. The prob lems of interest to us present unique challenges because of the need to build and manipulate complex mathematical models for both the plant and controller. As a result, along with colleagues and students, we set out to develop computer algebra tools to facilitate model building, nonlinear control system design, and code generation, the latter for both numerical simulation and real time con an outgrowth of that continuing effort. As trol implementation. This book is a result, the unique features of the book includes an integrated treatment of nonlinear control and analytical mechanics and a set of symbolic computing software tools for modeling and control system design. By simultaneously considering both mechanics and control we achieve a fuller appreciation of the underlying geometric ideas and constructions that are common to both. Control theory has had a fruitful association with analytical mechanics from its birth in the late 19th century.