Computational Methods and Experiments in Materials Characterization II


Book Description

Bringing together the work of practitioners in many fields of engineering, materials and computational science, this book includes most of the papers presented at the Second International Conference on Material Characterisation. Compiled with the central aim of encouraging interaction between experimentalists and modelers, the contributions featured are divided under the following sections: MICROSTRUCTURES ? Composites; Alloys; Ceramics; Cements; Foams; Suspensions; Biomaterials; Thin Films; Coatings. EXPERIMENTAL METHODS - Optical Imaging; SEM, TEM; X-Ray Microtomography; Ultrasonic Techniques; NMR/MRI; Micro/Nano Indentation; Thermal Analysis; Surface Chemistry. COMPUTATIONAL METHODS - Continuum Methods (FEM, FV, BEM); Particle Models (MD, DPD, Lattice-Boltzmann); Montecarlo Methods; Cellular Automata; Hybrid Multiscale Methods; and Damage Mechanics.




Computational Methods and Experiments in Materials Characterization III


Book Description

Until recently, engineering materials could be characterized successfully using relatively simple testing procedures. As materials technology advances, interest is growing in materials possessing complex meso-, micro- and nano-structures, which to a large extent determine their physical properties and behaviour. The purposes of materials modelling are many: optimization, investigation of failure, simulation of production processes, to name but a few. Modelling and characterisation are closely intertwined, increasingly so as the complexity of the material increases. Characterisation, in essence, is the connection between the abstract material model and the real-world behaviour of the material in question. Characterisation of complex materials therefore may require a combination of experimental techniques and computation. This book publishes papers presented at the Third International Conference on Computational Methods and Experiments in Material Characterisation.Topics covered include: Composites; Ceramics; Alloys; Cements and Cement Based Materials; Biomaterials; Thin Films and Coatings; Advanced Materials; Imaging Analysis; Thermal Analysis; New Methods; Surface Chemistry, Nano Indentation; Continuum Methods; Particle Models; Damage Mechanics; Innovative Techniques; Stochastic Methods.




Computational Modelling of Concrete Structures


Book Description

The EURO-C conference series (Split 1984, Zell am See 1990, Innsbruck 1994, Badgastein 1998, St Johann im Pongau 2003, Mayrhofen 2006, Schladming 2010, St Anton am Alberg 2014) brings together researchers and practising engineers concerned with theoretical, algorithmic and validation aspects associated with computational simulations of concrete and







Materials Characterisation IV


Book Description

Until recently, engineering materials could be characterised successfully using relatively simple testing procedures. As materials technology advances, interest is growing in materials possessing complex meso-, micro- and nano-structures, which to a large extent determine their physical properties and behaviour. The purposes of materials modelling are many - optimisation, investigation of failure, simulation of production processes, to name a few. Modelling and characterisation are closely intertwined, increasingly so as the complexity of the material increases. Characterisation, in essence, is the connection between the abstract material model and the real-world behaviour of the material in question. Characterisation of complex materials therefore may require a combination of experimental techniques and computation. This book contains papers from the Fourth International Conference on Computational Methods and Experiments in Materials Characterisation which brought researchers who use computational methods, those who perform experiments, and of course those who do both, in all areas of materials characterisation, to discuss their recent results and ideas, in order to foster the multidisciplinary approach that has become necessary for the study of complex phenomena.




Computational Methods and Experimental Measurements XVIII


Book Description

Papers presented at the CMEM 2017 conference form this book, which includes research from scientists, researchers and specialists who perform experiments, develop computer codes and carry out measurements on prototypes. A wide variety of topics related to new experimental and computational methods are explored.




Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures


Book Description

Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. - Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales - Provides fundamental theoretical insights, example problems, sample code and exercise problems - Outlines major characterization and synthesis methods for different types of 2D materials




Computer Methods and Recent Advances in Geomechanics


Book Description

Computer Methods and Recent Advances in Geomechanics covers computer methods, material modeling and testing, applications to a wide range of geomechanical issues, and recent advances in various areas that may not necessarily involve computer methods, and will be of interest to researchers and engineers involved in geotechnical mechanics and geo-engineering.




Integrated Computational Materials Engineering


Book Description

Integrated computational materials engineering (ICME) is an emerging discipline that can accelerate materials development and unify design and manufacturing. Developing ICME is a grand challenge that could provide significant economic benefit. To help develop a strategy for development of this new technology area, DOE and DoD asked the NRC to explore its benefits and promises, including the benefits of a comprehensive ICME capability; to establish a strategy for development and maintenance of an ICME infrastructure, and to make recommendations about how best to meet these opportunities. This book provides a vision for ICME, a review of case studies and lessons learned, an analysis of technological barriers, and an evaluation of ways to overcome cultural and organizational challenges to develop the discipline.




Integrated Computational Materials Engineering (ICME)


Book Description

​This book introduces research advances in Integrated Computational Materials Engineering (ICME) that have taken place under the aegis of the AFOSR/AFRL sponsored Center of Excellence on Integrated Materials Modeling (CEIMM) at Johns Hopkins University. Its author team consists of leading researchers in ICME from prominent academic institutions and the Air Force Research Laboratory. The book examines state-of-the-art advances in physics-based, multi-scale, computational-experimental methods and models for structural materials like polymer-matrix composites and metallic alloys. The book emphasizes Ni-based superalloys and epoxy matrix carbon-fiber composites and encompasses atomistic scales, meso-scales of coarse-grained models and discrete dislocations, and micro-scales of poly-phase and polycrystalline microstructures. Other critical phenomena investigated include the relationship between microstructural morphology, crystallography, and mechanisms to the material response at different scales; methods of identifying representative volume elements using microstructure and material characterization, and robust deterministic and probabilistic modeling of deformation and damage. Encompassing a slate of topics that enable readers to comprehend and approach ICME-related issues involved in predicting material performance and failure, the book is ideal for mechanical, civil, and aerospace engineers, and materials scientists, in in academic, government, and industrial laboratories.