Protein Interaction Networks


Book Description

The analysis of protein-protein interactions is fundamental to the understanding of cellular organization, processes, and functions. Proteins seldom act as single isolated species; rather, proteins involved in the same cellular processes often interact with each other. Functions of uncharacterized proteins can be predicted through comparison with the interactions of similar known proteins. Recent large-scale investigations of protein-protein interactions using such techniques as two-hybrid systems, mass spectrometry, and protein microarrays have enriched the available protein interaction data and facilitated the construction of integrated protein-protein interaction networks. The resulting large volume of protein-protein interaction data has posed a challenge to experimental investigation. This book provides a comprehensive understanding of the computational methods available for the analysis of protein-protein interaction networks. It offers an in-depth survey of a range of approaches, including statistical, topological, data-mining, and ontology-based methods. The author discusses the fundamental principles underlying each of these approaches and their respective benefits and drawbacks, and she offers suggestions for future research.




Protein-Protein Interactions


Book Description

Proteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.




Computational Methods to Study the Structure and Dynamics of Biomolecules and Biomolecular Processes


Book Description

This book provides a comprehensive overview of modern computer-based techniques for analyzing the structure, properties and dynamics of biomolecules and biomolecular processes. It is organized in four main parts; the first one deals with methodology of molecular simulations; the second one with applications of molecular simulations; the third one introduces bioinformatics methods and the use of experimental information in molecular simulations; the last part reports on selected applications of molecular quantum mechanics. This second edition has been thoroughly revised and updated to include the latest progresses made in the respective field of research.




Biological Data Mining in Protein Interaction Networks


Book Description

"The goal of this book is to disseminate research results and best practices from cross-disciplinary researchers and practitioners interested in, and working on bioinformatics, data mining, and proteomics"--Provided by publisher.




Explainable AI: Interpreting, Explaining and Visualizing Deep Learning


Book Description

The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.




Advances in Protein Molecular and Structural Biology Methods


Book Description

Advances in Protein Molecular and Structural Biology Methods offers a complete overview of the latest tools and methods applicable to the study of proteins at the molecular and structural level. The book begins with sections exploring tools to optimize recombinant protein expression and biophysical techniques such as fluorescence spectroscopy, NMR, mass spectrometry, cryo-electron microscopy, and X-ray crystallography. It then moves towards computational approaches, considering structural bioinformatics, molecular dynamics simulations, and deep machine learning technologies. The book also covers methods applied to intrinsically disordered proteins (IDPs)followed by chapters on protein interaction networks, protein function, and protein design and engineering. It provides researchers with an extensive toolkit of methods and techniques to draw from when conducting their own experimental work, taking them from foundational concepts to practical application. - Presents a thorough overview of the latest and emerging methods and technologies for protein study - Explores biophysical techniques, including nuclear magnetic resonance, X-ray crystallography, and cryo-electron microscopy - Includes computational and machine learning methods - Features a section dedicated to tools and techniques specific to studying intrinsically disordered proteins




Protein Interactions: Computational Methods, Analysis And Applications


Book Description

This book is indexed in Chemical Abstracts ServiceThe interactions of proteins with other molecules are important in many cellular activities. Investigations have been carried out to understand the recognition mechanism, identify the binding sites, analyze the the binding affinity of complexes, and study the influence of mutations on diseases. Protein interactions are also crucial in structure-based drug design.This book covers computational analysis of protein-protein, protein-nucleic acid and protein-ligand interactions and their applications. It provides up-to-date information and the latest developments from experts in the field, using illustrations to explain the key concepts and applications. This volume can serve as a single source on comparative studies of proteins interacting with proteins/DNAs/RNAs/carbohydrates and small molecules.







Computational Protein-Protein Interactions


Book Description

Often considered the workhorse of the cellular machinery, proteins are responsible for functions ranging from molecular motors to signaling. The broad recognition of their involvement in all cellular processes has led to focused efforts to predict their functions from sequences, and if available, from their structures. An overview of current resear




Protein-protein Interactions and Networks


Book Description

The biological interactions of living organisms, and protein-protein interactions in particular, are astonishingly diverse. This comprehensive book provides a broad, thorough and multidisciplinary coverage of its field. It integrates different approaches from bioinformatics, biochemistry, computational analysis and systems biology to offer the reader a comprehensive global view of the diverse data on protein-protein interactions and protein interaction networks.