Computational Optimal Control


Book Description

Computational Optimal Control: Tools and Practice provides a detailed guide to informed use of computational optimal control in advanced engineering practice, addressing the need for a better understanding of the practical application of optimal control using computational techniques. Throughout the text the authors employ an advanced aeronautical case study to provide a practical, real-life setting for optimal control theory. This case study focuses on an advanced, real-world problem known as the “terminal bunt manoeuvre” or special trajectory shaping of a cruise missile. Representing the many problems involved in flight dynamics, practical control and flight path constraints, this case study offers an excellent illustration of advanced engineering practice using optimal solutions. The book describes in practical detail the real and tested optimal control software, examining the advantages and limitations of the technology. Featuring tutorial insights into computational optimal formulations and an advanced case-study approach to the topic, Computational Optimal Control: Tools and Practice provides an essential handbook for practising engineers and academics interested in practical optimal solutions in engineering. Focuses on an advanced, real-world aeronautical case study examining optimisation of the bunt manoeuvre Covers DIRCOL, NUDOCCCS, PROMIS and SOCS (under the GESOP environment), and BNDSCO Explains how to configure and optimize software to solve complex real-world computational optimal control problems Presents a tutorial three-stage hybrid approach to solving optimal control problem formulations




Applied and Computational Optimal Control


Book Description

The aim of this book is to furnish the reader with a rigorous and detailed exposition of the concept of control parametrization and time scaling transformation. It presents computational solution techniques for a special class of constrained optimal control problems as well as applications to some practical examples. The book may be considered an extension of the 1991 monograph A Unified Computational Approach Optimal Control Problems, by K.L. Teo, C.J. Goh, and K.H. Wong. This publication discusses the development of new theory and computational methods for solving various optimal control problems numerically and in a unified fashion. To keep the book accessible and uniform, it includes those results developed by the authors, their students, and their past and present collaborators. A brief review of methods that are not covered in this exposition, is also included. Knowledge gained from this book may inspire advancement of new techniques to solve complex problems that arise in the future. This book is intended as reference for researchers in mathematics, engineering, and other sciences, graduate students and practitioners who apply optimal control methods in their work. It may be appropriate reading material for a graduate level seminar or as a text for a course in optimal control.




Computational Optimal Control


Book Description

Resources should be used sparingly both from a point of view of economy and eco logy. Thus in controlling industrial, economical and social processes, optimization is the tool of choice. In this area of applied numerical analysis, the INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL (IFAC) acts as a link between research groups in universities, national research laboratories and industry. For this pur pose, the technical committee Mathematics of Control of IFAC organizes biennial conferences with the objective of bringing together experts to exchange ideas, ex periences and future developments in control applications of optimization. There should be a genuine feedback loop between mathematicians, computer scientists, engineers and software developers. This loop should include the design, application and implementation of algorithms. The contributions of industrial practitioners are especially important. These proceedings contain selected papers from a workshop on CONTROL Ap PLICATIONS OF OPTIMIZATION, which took place at the Fachhochschule Miinchen in September 1992. The workshop was the ninth in a series of very successful bien nial meetings, starting with the Joint Automatic Control Conference in Denver in 1978 and followed by conferences in London, Oberpfaffenhofen, San Francisco, Ca pri, Tbilisi and Paris. The workshop was attended by ninety researchers from four continents. This volume represents the state of the art in the field, with emphasis on progress made since the publication of the proceedings of the Capri meeting, edited by G. di Pillo under the title 'Control Applications of Optimization and Nonlinear Programming'.




Computational Optimal Transport


Book Description

The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.




Formulation and Numerical Solution of Quantum Control Problems


Book Description

This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the Schr?dinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods. ??




Optimal Control Applied to Biological Models


Book Description

From economics and business to the biological sciences to physics and engineering, professionals successfully use the powerful mathematical tool of optimal control to make management and strategy decisions. Optimal Control Applied to Biological Models thoroughly develops the mathematical aspects of optimal control theory and provides insight into t




A Unified Computational Approach to Optimal Control Problems


Book Description

Concerned with optimal control theory, this text aims to supplement existing work in this field from the viewpoints of computation and applications. In particular those computational algorithms derived from the concept of control parametrization are emphasized in this text.




Optimal Control for Chemical Engineers


Book Description

This self-contained book gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, it provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle. The text presents various examples and basic concepts of optimal control and describes important numerical methods and computational algorithms for solving a wide range of optimal control problems, including periodic processes.




Computational Aspects of Linear Control


Book Description

The main objective of this volume is to create a bridge between control theory and its numerical analysis aspects. It is unique because it presents both subjects in a single volume. The book combines an exposition of linear control theory and the corresponding modern relevant computational techniques such as orthogonal polynomials, Padé approximation, numerical linear algebra, and some topics on nonlinear differential equations. It can be considered as an introduction to control theory for numerical analysts looking for a wide area of applications and as an introduction to recent numerical methods for control specialists. Audience: Aimed at advanced students at a doctoral or post-doctoral level, engineers, and researchers in control theory and numerical analysis.




Optimal Control with Engineering Applications


Book Description

This book introduces a variety of problem statements in classical optimal control, in optimal estimation and filtering, and in optimal control problems with non-scalar-valued performance criteria. Many example problems are solved completely in the body of the text. All chapter-end exercises are sketched in the appendix. The theoretical part of the book is based on the calculus of variations, so the exposition is very transparent and requires little mathematical rigor.