Computational Plasticity in Powder Forming Processes


Book Description

The powder forming process is an extremely effective method of manufacturing structural metal components with high-dimensional accuracy on a mass production basis. The process is applicable to nearly all industry sectors. It offers competitive engineering solutions in terms of technical performance and manufacturing costs. For these reasons, powder metallurgy is developing faster than other metal forming technology. Computational Plasticity in Powder Forming Proceses takes a specific look at the application of computer-aided engineering in modern powder forming technologies, with particular attention given to the Finite Element Method (FEM). FEM analysis provides detailed information on conditions within the processed material, which is often more complete than can be obtained even from elaborate physical experiments, and the numerical simulation makes it possible to examine a range of designs, or operating conditions economically.* Describes the mechanical behavior of powder materials using classical and modern constitutive theories.* Devoted to the application of adaptive FEM strategy in the analysis of powder forming processes.* 2D and 3D numerical modeling of powder forming processes are presented, using advanced plasticity models.




Advanced Computational Materials Modeling


Book Description

With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.




Computational Mechanics


Book Description




Extended Finite Element Method


Book Description

Introduces the theory and applications of the extended finite element method (XFEM) in the linear and nonlinear problems of continua, structures and geomechanics Explores the concept of partition of unity, various enrichment functions, and fundamentals of XFEM formulation. Covers numerous applications of XFEM including fracture mechanics, large deformation, plasticity, multiphase flow, hydraulic fracturing and contact problems Accompanied by a website hosting source code and examples




Enriched Numerical Techniques


Book Description

Enriched Numerical Techniques: Implementation and Applications explores recent advances in enriched numerical techniques, including the extended finite element method, meshfree methods, extended isogeometric analysis and coupled numerical techniques. Techniques for implementation and programming issues are discussed, with other sections discussing applications for enriched numerical techniques in solving a range of engineering problems. The level set methodologies for complex shaped irregularities is presented, as are enriched numerical methodologies for various complex and advanced problems such as Nonlinear Structural Analysis, Fracture and Fatigue in Structures, Elasto-Plastic Crack Growth, Large Deformation Analysis, Frictional Contact Problems, Thermo-Mechanical Problems, Fluid Flow Investigations, Composite Materials and Bio-mechanics. - Features explanations on how to use enriched numerical techniques to model problems in fracture mechanics, continuum mechanics, fluid flow, and biomechanics - Explains methods through the use of worked examples throughout - Provides practical advice on how to tackle programming issues




Polymers - Opportunities and Risks I


Book Description

Since their first industrial use polymers have gained a tremendous success. The two volumes of "Polymers - Opportunities and Risks" elaborate on both their potentials and on the impact on the environment arising from their production and applications. Volume 11 "Polymers - Opportunities and Risks I: General and Environmental Aspects" is dedicated to the basics of the engineering of polymers – always with a view to possible environmental implications. Topics include: materials, processing, designing, surfaces, the utilization phase, recycling, and depositing. Volume 12 "Polymers - Opportunities and Risks II: Sustainability, Product Design and Processing" highlights raw materials and renewable polymers, sustainability, additives for manufacture and processing, melt modification, biodegradation, adhesive technologies, and solar applications. All contributions were written by leading experts with substantial practical experience in their fields. They are an invaluable source of information not only for scientists, but also for environmental managers and decision makers.




A Review: Chill-Block Melt Spin Technique, Theories & Applications


Book Description

Rapid Solidification Processing of molten metals and alloys has proved to be a reliable route for producing new and advanced materials. The Chill-Block Melt Spin (CBMS) technique is important because its simplicity, flexibility and perfection. High quality materials can be produced with lower costs, as compared to other routes, by refining the microstructure and trapping the nucleated (new) metastable phases. Melt-spun ribbons subsequently produced can then be consolidated to produce billets and sheets that can be used in many industries especially high-tech industries such as aerospace and racing automobiles. This book contains several perspectives about CBMS technology and should be a useful review for undergraduate and post-graduate metallurgy students.




Computational Plasticity


Book Description

This book contains 14 invited contributions written by distinguished authors who participated in the VIII International Conference on Computational Plasticity held at CIMNE/UPC (www.cimne.com) from 5-8 September 2005, in Barcelona, Spain. The chapters present recent progress and future research directions in the field of computational plasticity.




Interdisciplinary Engineering Sciences


Book Description

Interdisciplinary Engineering Sciences introduces and emphasizes the importance of the interdisciplinary nature of education and research from a materials science perspective. This approach is aimed to promote understanding of the physical, chemical, biological and engineering aspects of any materials science problem. Contents are prepared to maintain the strong background of fundamental engineering disciplines while integrating them with the disciplines of natural science. It presents key concepts and includes case studies on biomedical materials and renewable energy. Aimed at senior undergraduate and graduate students in materials science and other streams of engineering, this book Explores interdisciplinary research aspects in a coherent manner for materials science researchers Presents key concepts of engineering sciences as relevant for materials science in terms of fundamentals and applications Discusses engineering mechanics, biological and physical sciences Includes relevant case studies and examples




Computational Plasticity


Book Description