Computational Techniques for Complex Transport Phenomena


Book Description

This book describes some newly developed computational techniques and modeling strategies for analyzing and predicting complex transport phenomena. It summarizes advances in the context of a pressure-based algorithm and discusses methods such as discretization schemes for treating convection and pressure, parallel computing, multigrid methods, and composite, multiblock techniques. The final chapter is devoted to practical applications that illustrate the advantages of various numerical and physical tools. The authors provide numerous examples throughout the text.




Computational Techniques for Complex Transport Phenomena


Book Description

This book describes some newly developed computational techniques and modeling strategies for analyzing and predicting complex transport phenomena. It summarizes advances in the context of a pressure-based algorithm and discusses methods such as discretization schemes for treating convection and pressure, parallel computing, multigrid methods, and composite, multiblock techniques. The final chapter is devoted to practical applications that illustrate the advantages of various numerical and physical tools. The authors provide numerous examples throughout the text.




Computational Transport Phenomena


Book Description

Computational techniques have become indispensable tools in solving complex problems in transport phenomena. This book provides a clear, user-oriented introduction to the subject of computational transport phenomena. Each self-contained chapter includes a detailed worked example and a discussion of the problem system equations. Also included are the numerical methods used; computer code for the solution of the problem system equations; discussion of the numerical solution with emphasis on physical interpretation; and, when appropriate, a comparison of the numerical solution with an analytical solution or a discussion of how the numerical solution goes beyond what can be done analytically, especially for nonlinear problems. Intended for students and a broad range of scientists and engineers, the book includes computer code written in transportable Fortran so the reader can produce the numerical solutions and then extend them to other cases.




Computational Transport Phenomena for Engineering Analyses


Book Description

Although computer technology has dramatically improved the analysis of complex transport phenomena, the methodology has yet to be effectively integrated into engineering curricula. The huge volume of literature associated with the wide variety of transport processes cannot be appreciated or mastered without using innovative tools to allow comprehen




Computational Transport Phenomena


Book Description

A clear, user-oriented introduction to the subject of computational transport phenomena, first published in 1997.




Computational Modeling for Fluid Flow and Interfacial Transport


Book Description

Transport processes are often characterized by the simultaneous presence of multiple dependent variables, multiple length scales, body forces, free boundaries and strong non-linearities. The various computational elements important for the prediction of complex fluid flows and interfacial transport are presented in this volume. Practical applications, presented in the form of illustrations and examples are emphasized, as well as physical interpretation of the computed results. The book is intended as a reference for researchers and graduate students in mechanical, aerospace, chemical and materials engineering. Both macroscopic and microscopic (but still continuum) features are addressed. In order to lay down a good foundation to facilitate discussion of more advanced techniques, the book has been divided into three parts. Part I presents the basic concepts of finite difference schemes for solving parabolic, elliptic and hyperbolic partial differential equations. Part II deals with issues related to computational modeling for fluid flow and transport phenomena. Existing algorithms to solve the Navier-Stokes equations can be generally classified as density-based methods and pressure-based methods. In this book the pressure-based method is emphasized. Recent efforts to improve the performance of the pressure-based algorithm, both qualitatively and quantitatively, are treated, including formulation of the algorithm and its generalization to all flow speeds, choice of coordinate system and primary velocity variables, issues of grid layout, open boundary treatment and the role of global mass conservation, convection treatment and convergence. Practical engineering applications, including gas-turbine combustor flow, heat transfer and convection in high pressure discharge lamps, thermal management under microgravity, and flow through hydraulic turbines are also discussed. Part III addresses the transport processes involving interfacial dynamics. Specifically those influenced by phase change, gravity, and capillarity are emphasized, and both the macroscopic and morphological (microscopic) scales are presented. Basic concepts of interface, capillarity, and phase change processes are summarized to help clarify physical mechanisms, followed by a discussion of recent developments in computational modeling. Numerical solutions are also discussed to illustrate the salient features of practical engineering applications. Fundamental features of interfacial dynamics have also been illustrated in the form of case studies, to demonstrate the interplay between fluid and thermal transport of macroscopic scales and their interaction with interfacial transport.




Computational Gasdynamics


Book Description

Numerical methods are indispensable tools in the analysis of complex fluid flows. This book focuses on computational techniques for high-speed gas flows, especially gas flows containing shocks and other steep gradients. The book decomposes complicated numerical methods into simple modular parts, showing how each part fits and how each method relates to or differs from others. The text begins with a review of gasdynamics and computational techniques. Next come basic principles of computational gasdynamics. The last two parts cover basic techniques and advanced techniques. Senior and graduate level students, especially in aerospace engineering, as well as researchers and practising engineers, will find a wealth of invaluable information on high-speed gas flows in this text.




Computational Methods for Complex Liquid-Fluid Interfaces


Book Description

Computational Methods for Complex Liquid-Fluid Interfaces highlights key computational challenges involved in the two-way coupling of complex liquid-fluid interfaces. The book covers a variety of cutting-edge experimental and computational techniques ranging from macro- to meso- and microscale approaches (including pivotal applications). As example







Advanced Transport Phenomena


Book Description

An integrated, modern approach to transport phenomena for graduate students, featuring traditional and contemporary examples to demonstrate the diverse practical applications of the theory. Written in an easy to follow style, the basic principles of transport phenomena, and model building are recapped in Chapters 1 and 2 before progressing logically through more advanced topics including physicochemical principles behind transport models. Treatments of numerical, analytical, and computational solutions are presented side by side, often with sample code in MATLAB, to aid students' understanding and develop their confidence in using computational skills to solve real-world problems. Learning objectives and mathematical prerequisites at the beginning of chapters orient students to what is required in the chapter, and summaries and over 400 end-of-chapter problems help them retain the key points and check their understanding. Online supplementary material including solutions to problems for instructors, supplementary reading material, sample computer codes, and case studies complete the package.