Algorithms for Computer Algebra


Book Description

Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.




Modern Computer Algebra


Book Description

Now in its third edition, this highly successful textbook is widely regarded as the 'bible of computer algebra'.




Computer Algebra and Symbolic Computation


Book Description

This book provides a systematic approach for the algorithmic formulation and implementation of mathematical operations in computer algebra programming languages. The viewpoint is that mathematical expressions, represented by expression trees, are the data objects of computer algebra programs, and by using a few primitive operations that analyze and




Computer Algebra


Book Description

The goal of Computer Algebra: Concepts and Techniques is to demystify computer algebra systems for a wide audience including students, faculty, and professionals in scientific fields such as computer science, mathematics, engineering, and physics. Unlike previous books, the only prerequisites are knowledge of first year calculus and a little programming experience — a background that can be assumed of the intended audience. The book is written in a lean and lively style, with numerous examples to illustrate the issues and techniques discussed. It presents the principal algorithms and data structures, while also discussing the inherent and practical limitations of these systems




Computer Algebra Handbook


Book Description

This Handbook gives a comprehensive snapshot of a field at the intersection of mathematics and computer science with applications in physics, engineering and education. Reviews 67 software systems and offers 100 pages on applications in physics, mathematics, computer science, engineering chemistry and education.




Computer Algebra and Symbolic Computation


Book Description

Mathematica, Maple, and similar software packages provide programs that carry out sophisticated mathematical operations. Applying the ideas introduced in Computer Algebra and Symbolic Computation: Elementary Algorithms, this book explores the application of algorithms to such methods as automatic simplification, polynomial decomposition, and polyno







Computer Algebra


Book Description

This book still remains the best introduction to computer algebra, catering to both the interested beginner and the experienced pure mathematician and computer scientist. This updated Second Edition provides a comprehensive review, and contains excellent references to fundamental papers and worked examples. In addition to being a general text on the subject, the book includes an appendix describing the use of one particular algebra system-REDUCE.




Algorithmic Algebra


Book Description

Algorithmic Algebra studies some of the main algorithmic tools of computer algebra, covering such topics as Gröbner bases, characteristic sets, resultants and semialgebraic sets. The main purpose of the book is to acquaint advanced undergraduate and graduate students in computer science, engineering and mathematics with the algorithmic ideas in computer algebra so that they could do research in computational algebra or understand the algorithms underlying many popular symbolic computational systems: Mathematica, Maple or Axiom, for instance. Also, researchers in robotics, solid modeling, computational geometry and automated theorem proving community may find it useful as symbolic algebraic techniques have begun to play an important role in these areas. The book, while being self-contained, is written at an advanced level and deals with the subject at an appropriate depth. The book is accessible to computer science students with no previous algebraic training. Some mathematical readers, on the other hand, may find it interesting to see how algorithmic constructions have been used to provide fresh proofs for some classical theorems. The book also contains a large number of exercises with solutions to selected exercises, thus making it ideal as a textbook or for self-study.




Python for Scientists


Book Description

Scientific Python is taught from scratch in this book via copious, downloadable, useful and adaptable code snippets. Everything the working scientist needs to know is covered, quickly providing researchers and research students with the skills to start using Python effectively.