Computer Graphics Through OpenGL®


Book Description

COMPREHENSIVE COVERAGE OF SHADERS AND THE PROGRAMMABLE PIPELINE From geometric primitives to animation to 3D modeling to lighting, shading and texturing, Computer Graphics Through OpenGL®: From Theory to Experiments is a comprehensive introduction to computer graphics which uses an active learning style to teach key concepts. Equally emphasizing theory and practice, the book provides an understanding not only of the principles of 3D computer graphics, but also the use of the OpenGL® Application Programming Interface (API) to code 3D scenes and animation, including games and movies. The undergraduate core of the book takes the student from zero knowledge of computer graphics to a mastery of the fundamental concepts with the ability to code applications using fourth-generation OpenGL®. The remaining chapters explore more advanced topics, including the structure of curves and surfaces, applications of projective spaces and transformations and the implementation of graphics pipelines. This book can be used for introductory undergraduate computer graphics courses over one to two semesters. The careful exposition style attempting to explain each concept in the simplest terms possible should appeal to the self-study student as well. Features • Covers the foundations of 3D computer graphics, including animation, visual techniques and 3D modeling • Comprehensive coverage of OpenGL® 4.x, including the GLSL and vertex, fragment, tessellation and geometry shaders • Includes 180 programs with 270 experiments based on them • Contains 750 exercises, 110 worked examples, and 700 four-color illustrations • Requires no previous knowledge of computer graphics • Balances theory with programming practice using a hands-on interactive approach to explain the underlying concepts




3D Computer Graphics


Book Description

This textbook, first published in 2003, emphasises the fundamentals and the mathematics underlying computer graphics. The minimal prerequisites, a basic knowledge of calculus and vectors plus some programming experience in C or C++, make the book suitable for self study or for use as an advanced undergraduate or introductory graduate text. The author gives a thorough treatment of transformations and viewing, lighting and shading models, interpolation and averaging, Bézier curves and B-splines, ray tracing and radiosity, and intersection testing with rays. Additional topics, covered in less depth, include texture mapping and colour theory. The book covers some aspects of animation, including quaternions, orientation, and inverse kinematics, and includes source code for a Ray Tracing software package. The book is intended for use along with any OpenGL programming book, but the crucial features of OpenGL are briefly covered to help readers get up to speed. Accompanying software is available freely from the book's web site.




Computer Graphics Programming in OpenGL with C++


Book Description

This new edition provides step-by-step instruction on modern 3D graphics shader programming in OpenGL with C++, along with its theoretical foundations. It is appropriate both for computer science graphics courses and for professionals interested in mastering 3D graphics skills. It has been designed in a 4-color, “teach-yourself” format with numerous examples that the reader can run just as presented. Every shader stage is explored, from the basics of modeling, textures, lighting, shadows, etc., through advanced techniques such as tessellation, normal mapping, noise maps, as well as new chapters on simulating water, stereoscopy, and ray tracing. FEATURES: Covers modern OpenGL 4.0+ shader programming in C++, with instructions for both PC/Windows and Macintosh Adds new chapters on simulating water, stereoscopy, and ray tracing Includes companion files with code, object models, figures, and more (also available for downloading by writing to the publisher) Illustrates every technique with running code examples. Everything needed to install the libraries, and complete source code for each example Includes step-by-step instruction for using each GLSL programmable pipeline stage (vertex, tessellation, geometry, and fragment) Explores practical examples for modeling, lighting, and shadows (including soft shadows), terrain, water, and 3D materials such as wood and marble Explains how to optimize code for tools such as Nvidia’s Nsight debugger. The companion files and instructor resources are available online by emailing the publisher with proof of purchase at [email protected].




Computer Graphics from Scratch


Book Description

Computer Graphics from Scratch demystifies the algorithms used in modern graphics software and guides beginners through building photorealistic 3D renders. Computer graphics programming books are often math-heavy and intimidating for newcomers. Not this one. Computer Graphics from Scratch takes a simpler approach by keeping the math to a minimum and focusing on only one aspect of computer graphics, 3D rendering. You’ll build two complete, fully functional renderers: a raytracer, which simulates rays of light as they bounce off objects, and a rasterizer, which converts 3D models into 2D pixels. As you progress you’ll learn how to create realistic reflections and shadows, and how to render a scene from any point of view. Pseudocode examples throughout make it easy to write your renderers in any language, and links to live JavaScript demos of each algorithm invite you to explore further on your own. Learn how to: Use perspective projection to draw 3D objects on a 2D plane Simulate the way rays of light interact with surfaces Add mirror-like reflections and cast shadows to objects Render a scene from any camera position using clipping planes Use flat, Gouraud, and Phong shading to mimic real surface lighting Paint texture details onto basic shapes to create realistic-looking objects Whether you’re an aspiring graphics engineer or a novice programmer curious about how graphics algorithms work, Gabriel Gambetta’s simple, clear explanations will quickly put computer graphics concepts and rendering techniques within your reach. All you need is basic coding knowledge and high school math. Computer Graphics from Scratch will cover the rest.




Computer Graphics Programming in OpenGL with Java


Book Description

This new edition provides both step-by-step instruction on modern 3D graphics shader programming in OpenGL with Java in addition to reviewing its theoretical foundations. It is appropriate both for computer science graphics courses and for professionals interested in mastering 3D graphics skills. It has been designed in a 4-color, “teach-yourself” format with numerous examples that the reader can run just as presented. Every shader stage is explored, from the basics of modeling, textures, lighting, shadows, etc., through advanced techniques such as tessellation, normal mapping, noise maps, as well as new chapters on simulating water, stereoscopy, and ray tracing. FEATURES Covers modern OpenGL 4.0+ shader programming in Java, with instructions for both PC/Windows and Macintosh Illustrates every technique with running code examples. Everything needed to install the libraries, and complete source code for each example Includes step-by-step instruction for using each GLSL programmable pipeline stage (vertex, tessellation, geometry, and fragment) Explores practical examples for modeling, lighting and shadows (including soft shadows), terrain, water, and 3D materials such as wood and marble Adds new chapters on simulating water, stereoscopy, and ray tracing with compute shaders Explains how to optimize code with tools such as Nvidia’s Nsight debugger Includes companion files with code, object models, figures, and more. The companion files and instructor resources are available online by emailing the publisher with proof of purchase at [email protected].




Practical Algorithms for 3D Computer Graphics


Book Description

Practical Algorithms for 3D Computer Graphics, Second Edition covers the fundamental algorithms that are the core of all 3D computer graphics software packages. Using Core OpenGL and OpenGL ES, the book enables you to create a complete suite of programs for 3D computer animation, modeling, and image synthesis.Since the publication of the first edit




Advanced Methods in Computer Graphics


Book Description

This book brings together several advanced topics in computer graphics that are important in the areas of game development, three-dimensional animation and real-time rendering. The book is designed for final-year undergraduate or first-year graduate students, who are already familiar with the basic concepts in computer graphics and programming. It aims to provide a good foundation of advanced methods such as skeletal animation, quaternions, mesh processing and collision detection. These and other methods covered in the book are fundamental to the development of algorithms used in commercial applications as well as research.




Foundations of 3D Computer Graphics


Book Description

An introduction to the basic concepts of 3D computer graphics that offers a careful mathematical exposition within a modern computer graphics application programming interface. Computer graphics technology is an amazing success story. Today, all of our PCs are capable of producing high-quality computer-generated images, mostly in the form of video games and virtual-life environments; every summer blockbuster movie includes jaw-dropping computer generated special effects. This book explains the fundamental concepts of 3D computer graphics. It introduces the basic algorithmic technology needed to produce 3D computer graphics, and covers such topics as understanding and manipulating 3D geometric transformations, camera transformations, the image-rendering process, and materials and texture mapping. It also touches on advanced topics including color representations, light simulation, dealing with geometric representations, and producing animated computer graphics. The book takes special care to develop an original exposition that is accessible and concise but also offers a clear explanation of the more difficult and subtle mathematical issues. The topics are organized around a modern shader-based version of OpenGL, a widely used computer graphics application programming interface that provides a real-time “rasterization-based” rendering environment. Each chapter concludes with exercises. The book is suitable for a rigorous one-semester introductory course in computer graphics for upper-level undergraduates or as a professional reference. Readers should be moderately competent programmers and have had some experience with linear algebra. After mastering the material presented, they will be on the path to expertise in an exciting and challenging field.




OpenGL Superbible


Book Description

OpenGL® SuperBible, Seventh Edition, is the definitive programmer’s guide, tutorial, and reference for OpenGL 4.5, the world’s leading 3D API for real-time computer graphics. The best introduction for any developer, it clearly explains OpenGL’s newest APIs; key extensions; shaders; and essential, related concepts. You’ll find up-to-date, hands-on guidance for all facets of modern OpenGL development—both desktop and mobile. The authors explain what OpenGL does, how it connects to the graphics pipeline, and how it manages huge datasets to deliver compelling experiences. Step by step, they present increasingly sophisticated techniques, illuminating key concepts with worked examples. They introduce OpenGL on several popular platforms, and offer up-to-date best practices and performance advice. This revised and updated edition introduces many new OpenGL 4.5 features, including important ARB and KHR extensions that are now part of the standard. It thoroughly covers the latest Approaching Zero Driver Overhead (AZDO) performance features, and demonstrates key enhancements with new example applications. Coverage includes A practical introduction to real-time 3D graphics, including foundational math Core techniques for rendering, transformations, and texturing Shaders and the OpenGL Shading Language (GLSL) in depth Vertex processing, drawing commands, primitives, fragments, and framebuffers Compute shaders: harnessing graphics cards for more than graphics Pipeline monitoring and control Managing, loading, and arbitrating access to data Building larger applications and deploying them across platforms Advanced rendering: light simulation, artistic and non-photorealistic effects, and more Reducing CPU overhead and analyzing GPU behavior Supercharging performance with persistent maps, bindless textures, and fine-grained synchronization Preventing and debugging errors New applications: texture compression, text drawing, font rendering with distance fields, high-quality texture filtering, and OpenMP Bonus material and sample code are available at openglsuperbible.com.




WebGL Programming Guide


Book Description

Using WebGL®, you can create sophisticated interactive 3D graphics inside web browsers, without plug-ins. WebGL makes it possible to build a new generation of 3D web games, user interfaces, and information visualization solutions that will run on any standard web browser, and on PCs, smartphones, tablets, game consoles, or other devices. WebGL Programming Guide will help you get started quickly with interactive WebGL 3D programming, even if you have no prior knowledge of HTML5, JavaScript, 3D graphics, mathematics, or OpenGL. You’ll learn step-by-step, through realistic examples, building your skills as you move from simple to complex solutions for building visually appealing web pages and 3D applications with WebGL. Media, 3D graphics, and WebGL pioneers Dr. Kouichi Matsuda and Dr. Rodger Lea offer easy-to-understand tutorials on key aspects of WebGL, plus 100 downloadable sample programs, each demonstrating a specific WebGL topic. You’ll move from basic techniques such as rendering, animating, and texturing triangles, all the way to advanced techniques such as fogging, shadowing, shader switching, and displaying 3D models generated by Blender or other authoring tools. This book won’t just teach you WebGL best practices, it will give you a library of code to jumpstart your own projects. Coverage includes: • WebGL’s origin, core concepts, features, advantages, and integration with other web standards • How and basic WebGL functions work together to deliver 3D graphics • Shader development with OpenGL ES Shading Language (GLSL ES) • 3D scene drawing: representing user views, controlling space volume, clipping, object creation, and perspective • Achieving greater realism through lighting and hierarchical objects • Advanced techniques: object manipulation, heads-up displays, alpha blending, shader switching, and more • Valuable reference appendixes covering key issues ranging from coordinate systems to matrices and shader loading to web browser settings This is the newest text in the OpenGL Technical Library, Addison-Wesley’s definitive collection of programming guides an reference manuals for OpenGL and its related technologies. The Library enables programmers to gain a practical understanding of OpenGL and the other Khronos application-programming libraries including OpenGL ES and OpenCL. All of the technologies in the OpenGL Technical Library evolve under the auspices of the Khronos Group, the industry consortium guiding the evolution of modern, open-standards media APIs.