Computer Simulations of Surfaces and Interfaces


Book Description

Studies of surfaces and interactions between dissimilar materials or phases are vital for modern technological applications. Computer simulation methods are indispensable in such studies and this book contains a substantial body of knowledge about simulation methods as well as the theoretical background for performing computer experiments and analyzing the data. The book is self-contained, covering a range of topics from classical statistical mechanics to a variety of simulation techniques, including molecular dynamics, Langevin dynamics and Monte Carlo methods. A number of physical systems are considered, including fluids, magnets, polymers, granular media, and driven diffusive systems. The computer simulation methods considered include both standard and accelerated versions. The simulation methods are clearly related to the fundamental principles of thermodynamics and statistical mechanics.







Physics of Surfaces and Interfaces


Book Description

This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.










Surfaces and Interfaces of Liquid Crystals


Book Description

This book describes the state of the art of our understanding of liquid-crystal interfaces on a molecular level. The interactions of liquid crystal molecules with a surface play an essential role in the operation of liquid crystal displays (LCD's) and other LC devices that are based on the controllable anchoring of LC molecules on polymer coated surfaces. This book addresses the microscopic interaction between a macromolecule (liquid crystal, polymer) and a wall, using state of the art surface and interface-sensitive experimental techniques, such as Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), Linear and Nonlinear Optical Microscopy and (Dynamic) Light Scattering (DLS). These experimental techniques were complemented with computer simulations and supra molecular chemistry methods to develop controllable polymeric surfaces.










Surfaces and Interfaces: Physics and Electronics


Book Description

Surfaces and Interfaces: Physics and Electronics covers the proceedings of the second Trieste ICTP-IUPAP Semiconductor Symposium, conducted at the International Center for Theoretical Physics in Trieste, Italy on August 30 to September 3, 1982. The book focuses on the processes, methodologies, reactions, and approaches involved in semiconductor physics. The selection first elaborates on the electronic properties and surface geometry of GaAs and ZnO surfaces; electronic structure of Si (III) surfaces; and photoemission studies of surface states on Si (III) 2X1. Discussions focus on consistency of different experiments, relating experiments to a theoretical model, quenching of surface states by hydrogen, inverse photoemission results, and basic data and models of the low-index ZnO surfaces. The text then examines Si (III) 2X1 studies by angle resolved photoemission; electronic surface states at steps in Si (III) 2X1; and a novel method for the study of optical properties of surfaces. The manuscript takes a look at spot profile analysis (LEED) of defects at silicon surfaces; chemisorption-induced defects at interfaces on compound semiconductors; and surface defects on semiconductors. The microscopic properties and behavior of silicide interfaces, recombination at semiconductor surfaces and interfaces, and dipoles, defects, and interfaces are also discussed. The selection is a highly recommended source of data for physicists and readers wanting to study semiconductor physics.




Computer Simulation of Dynamic Phenomena


Book Description

A description of computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. The text covers Maxwell's equations, and thermal and radiation diffusion, while the numerical procedures described permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.