Computer Vision Methods for Fast Image Classification and Retrieval


Book Description

The book presents selected methods for accelerating image retrieval and classification in large collections of images using what are referred to as ‘hand-crafted features.’ It introduces readers to novel rapid image description methods based on local and global features, as well as several techniques for comparing images. Developing content-based image comparison, retrieval and classification methods that simulate human visual perception is an arduous and complex process. The book’s main focus is on the application of these methods in a relational database context. The methods presented are suitable for both general-type and medical images. Offering a valuable textbook for upper-level undergraduate or graduate-level courses on computer science or engineering, as well as a guide for computer vision researchers, the book focuses on techniques that work under real-world large-dataset conditions.




Computer Vision – ECCV 2012


Book Description

The seven-volume set comprising LNCS volumes 7572-7578 constitutes the refereed proceedings of the 12th European Conference on Computer Vision, ECCV 2012, held in Florence, Italy, in October 2012. The 408 revised papers presented were carefully reviewed and selected from 1437 submissions. The papers are organized in topical sections on geometry, 2D and 3D shapes, 3D reconstruction, visual recognition and classification, visual features and image matching, visual monitoring: action and activities, models, optimisation, learning, visual tracking and image registration, photometry: lighting and colour, and image segmentation.




Multimedia Information Retrieval and Management


Book Description

Everything you ever wanted to know about multimedia retrieval and management. This comprehensive book offers a full picture of the cutting-edge technologies necessary for a profound introduction to the field. Leading experts also cover a broad range of practical applications.




Handbook Of Pattern Recognition And Computer Vision (2nd Edition)


Book Description

The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference. This indispensable handbook will continue to serve as an authoritative and comprehensive guide in the field.




Advanced Methods and Deep Learning in Computer Vision


Book Description

Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. - Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field - Illustrates principles with modern, real-world applications - Suitable for self-learning or as a text for graduate courses




Computational Intelligence in Data Mining


Book Description

The book presents high quality papers presented at the International Conference on Computational Intelligence in Data Mining (ICCIDM 2016) organized by School of Computer Engineering, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, India during December 10 – 11, 2016. The book disseminates the knowledge about innovative, active research directions in the field of data mining, machine and computational intelligence, along with current issues and applications of related topics. The volume aims to explicate and address the difficulties and challenges that of seamless integration of the two core disciplines of computer science.




Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies


Book Description

The fields of computer vision and image processing are constantly evolving as new research and applications in these areas emerge. Staying abreast of the most up-to-date developments in this field is necessary in order to promote further research and apply these developments in real-world settings. Computer Vision and Image Processing in Intelligent Systems and Multimedia Technologies features timely and informative research on the design and development of computer vision and image processing applications in intelligent agents as well as in multimedia technologies. Covering a diverse set of research in these areas, this publication is ideally designed for use by academicians, technology professionals, students, and researchers interested in uncovering the latest innovations in the field.




Methods and Supporting Technologies for Data Analysis


Book Description

The overwhelming pace of evolution in technology has made it possible to develop intelligent systems which help users in their dayly life activities. - cordingly, methods of recording, managing and analysing data have evolved from the very simple ?le systems into complex ambient supportive intelligent systems. This book arises as a compilation of methods, techniques and tools c- nected with data related issues: from modelling to analysis. A broad range of approaches such as database self-* techniques for ubiquitous environments, multimedia data, or data driven models will be reviewed. Di?erent areas of applications, in which data models conceptualize nowadays reality, starting from e-learning to electric transformers will be considered. The book is a collection of representative contributions to cover the sp- trum related to data bases, which support decision making and data mining methods as well as conceptualization. Datawarehouse technology and m- eling are presented in the ?rst chapter together with the deep review of datawarehouse techniques for supporting e-learning processes with special emphasis on data cubes, all the tools are considered in the context of imp- mentationofsoftwareapplication.Thesecondchaptercontinueswiththes- ilar technology and deals with the community data warehouse architecture.




Computer Vision - ACCV 2007


Book Description

This title is part of a two volume set that constitutes the refereed proceedings of the 8th Asian Conference on Computer Vision, ACCV 2007. Coverage includes shape and texture, image and video processing, face and gesture, tracking, camera networks, learning, motion and tracking, retrieval and search, human pose estimation, matching, face/gesture/action detection and recognition, low level vision and phtometory, motion and tracking, human detection, and segmentation.




Neural Information Processing


Book Description

The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic. The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows: Part I: Theory and algorithms; Part II: Theory and algorithms; human centred computing; AI and cybersecurity; Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications; Part IV: Applications.