Concepts and Inquiries for Teaching Elementary School Science


Book Description

Crafted to be the resource that best prepares pre-service teachers for today's science classroom, Concepts and Inquiries for Teaching Elementary School Science models inquiry teaching, addresses the realities of contemporary science classrooms, and provides guidelines about the materials teachers need to initiate and manage your own inquiry-based science classroom. FEATURES: Twelve Inquiry Units model constructivist applications, build conceptual knowledge, and provide a bank of classroom-tested lessons to use in your own science classroom-Gives concrete examples of the inquiry approach. Ex. P. 122. Benchmarks and Standards features help you see how to integrate the National Science Education Standards in your own teaching.




Science in Elementary Education


Book Description

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. Substantially rewritten to focus on inquiry teaching and learning as espoused in the National Science Education Standards, the new edition of Science in Elementary Education: Methods, Concepts, and Inquiries will prepare pre-service teachers to plan, facilitate, adapt, and assess inquiry experiences consistent with today’s science classroom. It accomplishes this by implementing the 6E model of inquiry teaching, addressing the planning and needs of inquiry teaching classrooms, and describing the materials teachers need to get up and running. This practical text includes over 350 Teaching Tips throughout and Twelve Inquiry Units that model constructivist applications, build conceptual knowledge, and provide a bank of classroom-tested lessons to use in science classrooms.




Inquiry and the National Science Education Standards


Book Description

Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.




Inquiry-based Science Education


Book Description

Students often think of science as disconnected pieces of information rather than a narrative that challenges their thinking, requires them to develop evidence-based explanations for the phenomena under investigation, and communicate their ideas in discipline-specific language as to why certain solutions to a problem work. The author provides teachers in primary and junior secondary school with different evidence-based strategies they can use to teach inquiry science in their classrooms. The research and theoretical perspectives that underpin the strategies are discussed as are examples of how different ones areimplemented in science classrooms to affect student engagement and learning. Key Features: Presents processes involved in teaching inquiry-based science Discusses importance of multi-modal representations in teaching inquiry based-science Covers ways to develop scientifically literacy Uses the Structure of Observed learning Outcomes (SOLO) Taxonomy to assess student reasoning, problem-solving and learning Presents ways to promote scientific discourse, including teacher-student interactions, student-student interactions, and meta-cognitive thinking




Hard-to-Teach Science Concepts


Book Description

Authors Susan Koba and Carol Mitchell introduce teachers of grades 3- 5 to their conceptual framework for successful instruction of hard-to-teach science concepts. Their methodology comprises four steps: (1) engage students about their preconceptions and address their thinking; (2) target lessons to be learned; (3) determine appropriate strategies; and (4) use Standards-based teaching that builds on student understandings. The authors not only explain how to use their framework but also provide a variety of tools and examples of its application on four hard-to-teach foundational concepts: the flow of energy and matter in ecosystems, force and motion, matter and its transformation, and Earth's shape. Both preservice and inservice elementary school teachers will find this approach appealing, and the authors' engaging writing style and user-friendly tables help educators adapt the method with ease.




Ambitious Science Teaching


Book Description

2018 Outstanding Academic Title, Choice Ambitious Science Teaching outlines a powerful framework for science teaching to ensure that instruction is rigorous and equitable for students from all backgrounds. The practices presented in the book are being used in schools and districts that seek to improve science teaching at scale, and a wide range of science subjects and grade levels are represented. The book is organized around four sets of core teaching practices: planning for engagement with big ideas; eliciting student thinking; supporting changes in students’ thinking; and drawing together evidence-based explanations. Discussion of each practice includes tools and routines that teachers can use to support students’ participation, transcripts of actual student-teacher dialogue and descriptions of teachers’ thinking as it unfolds, and examples of student work. The book also provides explicit guidance for “opportunity to learn” strategies that can help scaffold the participation of diverse students. Since the success of these practices depends so heavily on discourse among students, Ambitious Science Teaching includes chapters on productive classroom talk. Science-specific skills such as modeling and scientific argument are also covered. Drawing on the emerging research on core teaching practices and their extensive work with preservice and in-service teachers, Ambitious Science Teaching presents a coherent and aligned set of resources for educators striving to meet the considerable challenges that have been set for them.




Teaching Science in Elementary and Middle School


Book Description

Teaching Science in Elementary and Middle School offers in-depth information about the fundamental features of project-based science and strategies for implementing the approach. In project-based science classrooms students investigate, use technology, develop artifacts, collaborate, and make products to show what they have learned. Paralleling what scientists do, project-based science represents the essence of inquiry and the nature of science. Because project-based science is a method aligned with what is known about how to help all children learn science, it not only helps students learn science more thoroughly and deeply, it also helps them experience the joy of doing science. Project-based science embodies the principles in A Framework for K-12 Science Education and the Next Generation Science Standards. Blending principles of learning and motivation with practical teaching ideas, this text shows how project-based learning is related to ideas in the Framework and provides concrete strategies for meeting its goals. Features include long-term, interdisciplinary, student-centered lessons; scenarios; learning activities, and "Connecting to Framework for K–12 Science Education" textboxes. More concise than previous editions, the Fourth Edition offers a wealth of supplementary material on a new Companion Website, including many videos showing a teacher and class in a project environment.




Teaching Science for Understanding in Elementary and Middle Schools


Book Description

"This book comes at just the right time, as teachers are being encouraged to re-examine current approaches to science instruction." -Lynn Rankin, Director, Institute for Inquiry, Exploratorium "Easy to read and comprehend with very explicit examples, it will be foundational for classroom teachers as they journey from novice teacher of science to expert." -Jo Anne Vasquez, Ph.D., Past President of the National Science Teachers Association "Teaching Science for Understanding is a comprehensive, exquisitely written guide and well-illustrated resource for high quality teaching and learning of inquiry-based science." -Hubert M. Dyasi, Ph.D., Professor of Science, City College and City University of New York Even though there is an unending supply of science textbooks, kits, and other resources, the practice of teaching science is more challenging than simply setting up an experiment. In Teaching Science for Understanding in Elementary and Middle Schools, Wynne Harlen focuses on why developing understanding is essential in science education and how best to engage students in activities that deepen their curiosity about the world and promote enjoyment of science. Teaching Science for Understanding in Elementary and Middle Schools centers on how to build on the ideas your students already have to cultivate the thinking and skills necessary for developing an understanding of the scientific aspects of the world, including: helping students develop and use the skills of investigation drawing conclusions from data through analyzing, interpreting, and explaining creating classrooms that encourage students to explain and justify their thinking asking productive questions to support students' understanding. Through classroom vignettes, examples, and practical suggestions at the end of each chapter, Wynne provides a compelling vision of what can be achieved through science education...and strategies that you can implement in your classroom right now.




How Students Learn


Book Description

How do you get a fourth-grader excited about history? How do you even begin to persuade high school students that mathematical functions are relevant to their everyday lives? In this volume, practical questions that confront every classroom teacher are addressed using the latest exciting research on cognition, teaching, and learning. How Students Learn: History, Mathematics, and Science in the Classroom builds on the discoveries detailed in the bestselling How People Learn. Now, these findings are presented in a way that teachers can use immediately, to revitalize their work in the classroom for even greater effectiveness. Organized for utility, the book explores how the principles of learning can be applied in teaching history, science, and math topics at three levels: elementary, middle, and high school. Leading educators explain in detail how they developed successful curricula and teaching approaches, presenting strategies that serve as models for curriculum development and classroom instruction. Their recounting of personal teaching experiences lends strength and warmth to this volume. The book explores the importance of balancing students' knowledge of historical fact against their understanding of concepts, such as change and cause, and their skills in assessing historical accounts. It discusses how to build straightforward science experiments into true understanding of scientific principles. And it shows how to overcome the difficulties in teaching math to generate real insight and reasoning in math students. It also features illustrated suggestions for classroom activities. How Students Learn offers a highly useful blend of principle and practice. It will be important not only to teachers, administrators, curriculum designers, and teacher educators, but also to parents and the larger community concerned about children's education.