Concepts in Physical Metallurgy


Book Description

The progress of civilization can be, in part, attributed to their ability to employ metallurgy. This book is an introduction to multiple facets of physical metallurgy, materials science, and engineering. As all metals are crystalline in structure, it focuses attention on these structures and how the formation of these crystals are responsible for certain aspects of the material's chemical and physical behaviour. Concepts in Physical Metallurgy also discusses the mechanical properties of metals, the theory of alloys, and physical metallurgy of ferrous and non-ferrous alloys.




Physical Metallurgy Principles


Book Description

* Covers all aspects of physical metallurgy and behavior of metals and alloys. * Presents the principles on which metallurgy is based. * Concepts such as heat affected zone and structure-property relationships are covered. * Principles of casting are clearly outlined in the chapter on solidification. * Advanced treatment on physical metallurgy provides specialized information on metals.




Physical Metallurgy


Book Description

Physical metallurgy is one of the main fields of metallurgical science dealing with the development of the microstructure of metals in order to achieve desirable properties required in technological applications. Physical Metallurgy: Principles and Design focuses on the processing–structure–properties triangle as it applies to metals and alloys. It introduces the fundamental principles of physical metallurgy and the design methodologies for alloys and processing. The first part of the book discusses the structure and change of structure through phase transformations. The latter part of the books deals with plastic deformation, strengthening mechanisms, and mechanical properties as they relate to structure. The book also includes a chapter on physical metallurgy of steels and concludes by discussing the computational tools, involving computational thermodynamics and kinetics, to perform alloy and process design.




Introduction to the Physical Metallurgy of Welding


Book Description

A textbook for a graduate or undergraduate course in materials science, metallurgy, or engineering. Explores the relationship between microstructure and the properties of welds. Focuses on steel, but the principles can be applied to other alloys. Updated from the 1983 first edition, with an increased emphasis on the numerical analysis approach to weldability. Annotation copyright by Book News, Inc., Portland, OR




Physical Metallurgy


Book Description

For students ready to advance in their study of metals, Physical Metallurgy, Second Edition uses engaging historical and contemporary examples that relate to the applications of concepts in each chapter.This book combines theoretical concepts, real alloy systems, processing procedures, and examples of real-world applications. The author uses his ex




PHYSICAL METALLURGY: PRINCIPLES AND PRACTICE, Third Edition


Book Description

This well-established book, now in its Third Edition, presents the principles and applications of engineering metals and alloys in a highly readable form. This new edition retains all the basic topics covered in earlier editions such as phase diagrams, phase transformations, heat treatment of steels and nonferrous alloys, shape memory alloys, solidification, fatigue, fracture and corrosion, as well as applications of engineering alloys. A new chapter on ‘Nanomaterials’ has been added (Chapter 8). The field of nano-materials is interdisciplinary in nature, covering many disciplines including physical metallurgy. Intended as a text for undergraduate courses in Metallurgical and Materials Engineering, the book is also suitable for students preparing for associate membership examination of the Indian Institute of Metals (AMIIM) and other professional examinations like AMIE.







Concepts in Physical Metallurgy


Book Description

The progress of civilization can be, in part, attributed to their ability to employ metallurgy. This book is an introduction to multiple facets of physical metallurgy, materials science, and engineering. As all metals are crystalline in structure, it focuses attention on these structures and how the formation of these crystals are responsible for certain aspects of the material's chemical and physical behaviour. Concepts in Physical Metallurgy also discusses the mechanical properties of metals, the theory of alloys, and physical metallurgy of ferrous and non-ferrous alloys.




Introduction to the Physical Metallurgy of Welding


Book Description

Introduction to the Physical Metallurgy of Welding deals primarily with the welding of steels, which reflects the larger volume of literature on this material; however, many of the principles discussed can also be applied to other alloys. The book is divided into four chapters, in which the middle two deal with the microstructure and properties of the welded joint, such as the weld metal and the heat-affected zone. The first chapter is designed to provide a wider introduction to the many process variables of fusion welding, particularly those that may influence microstructure and properties, while the final chapter is concerned with cracking and fracture in welds. A comprehensive case study of the Alexander Kielland North Sea accommodation platform disaster is also discussed at the end. The text is written for undergraduate or postgraduate courses in departments of metallurgy, materials science, or engineering materials. The book will also serve as a useful revision text for engineers concerned with welding problems in industry.




Physical Foundations of Materials Science


Book Description

In this vivid and comprehensible introduction to materials science, the author expands the modern concepts of metal physics to formulate basic theory applicable to other engineering materials, such as ceramics and polymers. Written for engineering students and working engineers with little previous knowledge of solid-state physics, this textbook enables the reader to study more specialized and fundamental literature of materials science. Dozens of illustrative photographs, many of them transmission electron microscopy images, plus line drawings, aid developing a firm appreciation of this complex topic. Hard-to-grasp terms such as "textures" are lucidly explained - not only the phenomenon itself, but also its consequences for the material properties. This excellent book makes materials science more transparent.