Concepts in Syngas Manufacture


Book Description

This book provides a general overview of syngas technologies as well as an in-depth analysis of the steam reforming process. Syngas is a mixture of hydrogen and carbon oxides which can be made from hydrocarbons, coal and biomass. It is an important intermediate in the chemical industry for manufacture of ammonia, methanol and other petrochemicals as well as hydrogen for refineries and fuel cells. Syngas is playing a growing role in the energy sector, because it can be converted into a number of important energy carriers and fuels. Syngas catalysis creates new options and flexibility in the complex energy network. The steam reforming process is the main technology today for manufacture of syngas. It is a complex intern-mingling of catalysis and heat transfer with restrictions caused by secondary phenomena such as carbon formation. Many of the principles are applicable for other gasification technologies of growing importance. Concepts of Syngas Preparation aims to provide a comprehensive introduction to this complex field of growing importance and gives a detailed analysis of the catalyst and process problems. This book also serves as an important link between science and industry by illustrating how the basic principles can be applied to solve design issues and operational problems.




Concepts In Syngas Manufacture


Book Description

This book provides a general overview of syngas technologies as well as an in-depth analysis of the steam reforming process. Syngas is a mixture of hydrogen and carbon oxides which can be made from hydrocarbons, coal and biomass. It is an important intermediate in the chemical industry for manufacture of ammonia, methanol and other petrochemicals as well as hydrogen for refineries and fuel cells. Syngas is playing a growing role in the energy sector, because it can be converted into a number of important energy carriers and fuels. Syngas catalysis creates new options and flexibility in the complex energy network. The steam reforming process is the main technology today for manufacture of syngas. It is a complex intern-mingling of catalysis and heat transfer with restrictions caused by secondary phenomena such as carbon formation. Many of the principles are applicable for other gasification technologies of growing importance. Concepts of Syngas Preparation aims to provide a comprehensive introduction to this complex field of growing importance and gives a detailed analysis of the catalyst and process problems. This book also serves as an important link between science and industry by illustrating how the basic principles can be applied to solve design issues and operational problems./a




Hydrogen and Syngas Production and Purification Technologies


Book Description

Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications Serves as a resource for practicing researchers and as a text in graduate-level programs Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants Includes homework-style problems




Sustainable Catalysis for Biorefineries


Book Description

Biorefineries are becoming increasingly important in providing sustainable routes for chemical industry processes. The establishment of bio-economic models, based on biorefineries for the creation of innovative products with high added value, such as biochemicals and bioplastics, allows the development of “green chemistry” methods in synergy with traditional chemistry. This reduces the heavy dependence on imports and assists the development of economically and environmentally sustainable production processes, that accommodate the huge investments, research and innovation efforts. This book explores the most effective or promising catalytic processes for the conversion of biobased components into high added value products, as platform chemicals and intermediates. With a focus on heterogeneous catalysis, this book is ideal for researchers working in catalysis and in green chemistry.




Recent Advances in Thermochemical Conversion of Biomass


Book Description

This book provides general information and data on one of the most promising renewable energy sources: biomass for its thermochemical conversion. During the last few years, there has been increasing focus on developing the processes and technologies for the conversion of biomass to liquid and gaseous fuels and chemicals, in particular to develop low-cost technologies. This book provides date-based scientific information on the most advanced and innovative processing of biomass as well as the process development elements on thermochemical processing of biomass for the production of biofuels and bio-products on (biomass-based biorefinery). The conversion of biomass to biofuels and other value-added products on the principle biorefinery offers potential from technological perspectives as alternate energy. The book covers intensive R&D and technological developments done during the last few years in the area of renewable energy utilizing biomass as feedstock and will be highly beneficial for the researchers, scientists and engineers working in the area of biomass-biofuels- biorefinery. - Provides the most advanced and innovative thermochemical conversion technology for biomass - Provides information on large scales such as thermochemical biorefinery - Useful for researchers intending to study scale up - Serves as both a textbook for graduate students and a reference book for researchers - Provides information on integration of process and technology on thermochemical conversion of biomass




Thermochemical Processing of Biomass


Book Description

A comprehensive examination of the large number of possible pathways for converting biomass into fuels and power through thermochemical processes Bringing together a widely scattered body of information into a single volume, this book provides complete coverage of the many ways that thermochemical processes are used to transform biomass into fuels, chemicals and power. Fully revised and updated, this new edition highlights the substantial progress and recent developments that have been made in this rapidly growing field since publication of the first edition and incorporates up-to-date information in each chapter. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition incorporates two new chapters covering: condensed phased reactions of thermal deconstruction of biomass and life cycle analysis of thermochemical processing systems. It offers a new introductory chapter that provides a more comprehensive overview of thermochemical technologies. The book also features fresh perspectives from new authors covering such evolving areas as solvent liquefaction and hybrid processing. Other chapters cover combustion, gasification, fast pyrolysis, upgrading of syngas and bio-oil to liquid transportation fuels, and the economics of thermochemically producing fuels and power, and more. Features contributions by a distinguished group of European and American researchers offering a broad and unified description of thermochemical processing options for biomass Combines an overview of the current status of thermochemical biomass conversion as well as engineering aspects to appeal to the broadest audience Edited by one of Biofuels Digest’s "Top 100 People" in bioenergy for six consecutive years Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power, 2nd Edition will appeal to all academic researchers, process chemists, and engineers working in the field of biomass conversion to fuels and chemicals. It is also an excellent book for graduate and advanced undergraduate students studying biomass, biofuels, renewable resources, and energy and power generation.




Integrated Gasification Combined Cycle (IGCC) Technologies


Book Description

Integrated Gasification Combined Cycle (IGCC) Technologies discusses this innovative power generation technology that combines modern coal gasification technology with both gas turbine and steam turbine power generation, an important emerging technology which has the potential to significantly improve the efficiencies and emissions of coal power plants. The advantages of this technology over conventional pulverized coal power plants include fuel flexibility, greater efficiencies, and very low pollutant emissions. The book reviews the current status and future developments of key technologies involved in IGCC plants and how they can be integrated to maximize efficiency and reduce the cost of electricity generation in a carbon-constrained world. The first part of this book introduces the principles of IGCC systems and the fuel types for use in IGCC systems. The second part covers syngas production within IGCC systems. The third part looks at syngas cleaning, the separation of CO2 and hydrogen enrichment, with final sections describing the gas turbine combined cycle and presenting several case studies of existing IGCC plants. - Provides an in-depth, multi-contributor overview of integrated gasification combined cycle technologies - Reviews the current status and future developments of key technologies involved in IGCC plants - Provides several case studies of existing IGCC plants around the world




Syngas Production from Coal - Cost Analysis - Syngas E51C


Book Description

This report presents a cost analysis of Synthesis Gas (Syngas) production from coal. The process examined is a typical coal gasification process. This report was developed based essentially on the following reference(s): Keywords: Carbon Monoxide, Coal Gasification




Syngas Production from Fuel Oil - Cost Analysis - Syngas E31A


Book Description

This report presents a cost analysis of Synthesis Gas (Syngas) production from heavy fuel oil. The process examined is a typical partial oxidation process. This report was developed based essentially on the following reference(s): Keywords: Heavy Fuel Oil, No.6 Fuel Oil, Partial Oxidation, 1:1 Synthesis Gas




Syngas Production from Vaccum Residue - Cost Analysis - Syngas E41A


Book Description

This report presents a cost analysis of Syngas (Synthesis Gas) production from vacuum residue. The process examined is a typical non-catalytic partial oxidation process using as raw material the bottom product of a vacuum distillation unit, known as vacuum residue. This report was developed based essentially on the following reference(s): Keywords: Carbon Monoxide, Partial Oxidation