Introduction to Theoretical Organic Chemistry and Molecular Modelling


Book Description

"Introduction to Theoretical Organic Chemistry" provides an introduction for chemists with a limited mathematical background, yet need a working understanding of quantum chemistry as applied to problems in organic chemistry. This book is unique in that it is written at the level of the advanced undergraduate or beginning graduate student in organic chemistry, whose exposure to theoretical chemistry is relatively recent. It fills a niche in that most books on theoretical organic chemistry are written by theoretical or computational chemists, whereas this book is written by an organic chemist. The book covers molecular modeling computer software, and offers a useful guide to the scope and limitations of each program, along with specific examples of input and output for several of the most popular software. Numerous examples and exercises are provided.




New Theoretical Concepts for Understanding Organic Reactions


Book Description

People who attended the NATO Advanced Study Institute (ASI) entitled NEW THEORETICAL CONCEPTS FOR UNDERSTANDING ORGANIC REAC TIONS held at Sant Feliu de Gufxols on the Costa Brava of Spain had a unique experience. They have seen the evolution of the field from qualitative arguments through the generation of Potential Energy Surfaces (PES) to the use of PES in molecular dynamics. The excellent lectures that were dedicated to the various aspects of Potential Energy Surfaces clearly revealed a colossal amount of ma terial that represents our current understanding of the overall problem. It is our hope that the present volume will recreate the excitement in the readers that we all experienced during the meeting in Spain. One can say, without too much exaggeration, that chemistry has become and exercise on potential energy surfaces (PES). Structural (position of the energy minima), spectroscopic (vicinity around the minima), and reactivity (reaction path along the surface) properties may be determined from the analysis of PES. New theoretical tools, together with recent developments in computer technology and programming, have allowed to obtain a better knowledge of these surfaces, and to extract further chemical information from them, so new horizons have been added to Theoretical Organic Chemistry.




Organic Chemistry


Book Description

Provides the background, tools, and models required to understand organic synthesis and plan chemical reactions more efficiently Knowledge of physical chemistry is essential for achieving successful chemical reactions in organic chemistry. Chemists must be competent in a range of areas to understand organic synthesis. Organic Chemistry provides the methods, models, and tools necessary to fully comprehend organic reactions. Written by two internationally recognized experts in the field, this much-needed textbook fills a gap in current literature on physical organic chemistry. Rigorous yet straightforward chapters first examine chemical equilibria, thermodynamics, reaction rates and mechanisms, and molecular orbital theory, providing readers with a strong foundation in physical organic chemistry. Subsequent chapters demonstrate various reactions involving organic, organometallic, and biochemical reactants and catalysts. Throughout the text, numerous questions and exercises, over 800 in total, help readers strengthen their comprehension of the subject and highlight key points of learning. The companion Organic Chemistry Workbook contains complete references and answers to every question in this text. A much-needed resource for students and working chemists alike, this text: -Presents models that establish if a reaction is possible, estimate how long it will take, and determine its properties -Describes reactions with broad practical value in synthesis and biology, such as C-C-coupling reactions, pericyclic reactions, and catalytic reactions -Enables readers to plan chemical reactions more efficiently -Features clear illustrations, figures, and tables -With a Foreword by Nobel Prize Laureate Robert H. Grubbs Organic Chemistry: Theory, Reactivity, and Mechanisms in Modern Synthesis is an ideal textbook for students and instructors of chemistry, and a valuable work of reference for organic chemists, physical chemists, and chemical engineers.




Orbital Interaction Theory of Organic Chemistry


Book Description

A practical introduction to orbital interaction theory and its applications in modern organic chemistry Orbital interaction theory is a conceptual construct that lies at the very heart of modern organic chemistry. Comprising a comprehensive set of principles for explaining chemical reactivity, orbital interaction theory originates in a rigorous theory of electronic structure that also provides the basis for the powerful computational models and techniques with which chemists seek to describe and exploit the structures and thermodynamic and kinetic stabilities of molecules. Orbital Interaction Theory of Organic Chemistry, Second Edition introduces students to the fascinating world of organic chemistry at the mechanistic level with a thoroughly self-contained, well-integrated exposition of orbital interaction theory and its applications in modern organic chemistry. Professor Rauk reviews the concepts of symmetry and orbital theory, and explains reactivity in common functional groups and reactive intermediates in terms of orbital interaction theory. Aided by numerous examples and worked problems, he guides readers through basic chemistry concepts, such as acid and base strength, nucleophilicity, electrophilicity, and thermal stability (in terms of orbital interactions), and describes various computational models for describing those interactions. Updated and expanded, this latest edition of Orbital Interaction Theory of Organic Chemistry includes a completely new chapter on organometallics, increased coverage of density functional theory, many new application examples, and worked problems. The text is complemented by an interactive computer program that displays orbitals graphically and is available through a link to a Web site. Orbital Interaction Theory of Organic Chemistry, Second Edition is an excellent text for advanced-level undergraduate and graduate students in organic chemistry. It is also a valuable working resource for professional chemists seeking guidance on interpreting the quantitative data produced by modern computational chemists.




Organic Chemistry


Book Description

Provides an in-depth study of organic compounds that bridges the gap between general and organic chemistry Organic Chemistry: Concepts and Applications presents a comprehensive review of organic compounds that is appropriate for a two-semester sophomore organic chemistry course. The text covers the fundamental concepts needed to understand organic chemistry and clearly shows how to apply the concepts of organic chemistry to problem-solving. In addition, the book highlights the relevance of organic chemistry to the environment, industry, and biological and medical sciences. The author includes multiple-choice questions similar to aptitude exams for professional schools, including the Medical College Admissions Test (MCAT) and Dental Aptitude Test (DAT) to help in the preparation for these important exams. Rather than categorize content information by functional groups, which often stresses memorization, this textbook instead divides the information into reaction types. This approach bridges the gap between general and organic chemistry and helps students develop a better understanding of the material. A manual of possible solutions for chapter problems for instructors and students is available in the supplementary websites. This important book: • Provides an in-depth study of organic compounds with division by reaction types that bridges the gap between general and organic chemistry • Covers the concepts needed to understand organic chemistry and teaches how to apply them for problem-solving • Puts a focus on the relevance of organic chemistry to the environment, industry, and biological and medical sciences • Includes multiple choice questions similar to aptitude exams for professional schools Written for students of organic chemistry, Organic Chemistry: Concepts and Applications is the comprehensive text that presents the material in clear terms and shows how to apply the concepts to problem solving.




Mathematical Concepts in Organic Chemistry


Book Description

The present book is an attempt to outline some, certainly not all, mathematical aspects of modern organic chemistry. We have focused our attention on topological, graph-theoretical and group-theoretical features of organic chemistry, Parts A, B and C. The book is directed to all those chemists who use, or who intend to use mathe matics in their work, and especially to graduate students. The level of our exposition is adjusted to the mathematical background of graduate students of chemistry and only some knowledge of elementary algebra and calculus is required from the readers of the book. Some less well-known. but still elementary mathematical facts are collected in Appendices 1-4. This, however, does not mean that the mathematical rigor and numerous tedious, but necessary technical details have been avoided. The authors' intention was to show the reader not only how the results of mathematical chemistry look, but also how they can be obtained. In accordance with this, Part 0 of the book contains a few selected advanced topics which should give the reader the flavour of the contemporary research in mathe matical organic chemistry. One of the authors (I.G.) was an Alexander von Humboldt fellow in 1985 when the main part of the book was written. He gratefully acknowledges the financial support of the Alexander von Humboldt Foundation which enabled his stay at the Max-Planck-Institut fUr Strahlenchemie in M iilheim and the writing of this book.




Theoretical Organic Chemistry


Book Description

This volume is devoted to the various aspects of theoretical organic chemistry. In the nineteenth century, organic chemistry was primarily an experimental, empirical science. Throughout the twentieth century, the emphasis has been continually shifting to a more theoretical approach. Today, theoretical organic chemistry is a distinct area of research, with strong links to theoretical physical chemistry, quantum chemistry, computational chemistry, and physical organic chemistry.The objective in this volume has been to provide a cross-section of a number of interesting topics in theoretical organic chemistry, starting with a detailed account of the historical development of this discipline and including topics devoted to quantum chemistry, physical properties of organic compounds, their reactivity, their biological activity, and their excited-state properties.




Theoretical and Physical Principles of Organic Reactivity


Book Description

This approach to the general problem of organic reactivity combines classical organic chemistry with new theoretical ideas developed by the author. The text contains a non-mathematical description of the curve crossing model, expressed in the language of qualitative valence bond theory.




The Vocabulary and Concepts of Organic Chemistry


Book Description

This book is a basic reference providing concise, accurate definitions of the key terms and concepts of organic chemistry. Not simply a listing of organic compounds, structures, and nomenclatures, the book is organized into topical chapters in which related terms and concepts appear in close proximity to one another, giving context to the information and helping to make fine distinctions more understandable. Areas covered include: bonding, symmetry, stereochemistry, types of organic compounds, reactions, mechansims, spectroscopy, and photochemistry.




Introductory Organic Chemistry and Hydrocarbons


Book Description

A novel proposal for teaching organic chemistry based on a broader and simplified use of quantum chemistry theories and notions of some statistical thermodynamic concepts aiming to enrich the learning process of the organic molecular properties and organic reactions. A detailed physical chemistry approach to teach organic chemistry for undergraduate students is the main aim of this book. A secondary objective is to familiarize undergraduate students with computational chemistry since most of illustrations of optimized geometries (plus some topological graphs) and information is from quantum chemistry outputs which will also enable students to obtain a deeper understanding of organic chemistry.