Concepts, Strategies and Models to Enhance Physics Teaching and Learning


Book Description

This book discusses novel research on and practices in the field of physics teaching and learning. It gathers selected high-quality studies that were presented at the GIREP-ICPE-EPEC 2017 conference, which was jointly organised by the International Research Group on Physics Teaching (GIREP); European Physical Society – Physics Education Division, and the Physics Education Commission of the International Union of Pure and Applied Physics (IUPAP). The respective chapters address a wide variety of topics and approaches, pursued in various contexts and settings, all of which represent valuable contributions to the field of physics education research. Examples include the design of curricula and strategies to develop student competencies—including knowledge, skills, attitudes and values; workshop approaches to teacher education; and pedagogical strategies used to engage and motivate students. This book shares essential insights into current research on physics education and will be of interest to physics teachers, teacher educators and physics education researchers around the world who are working to combine research and practice in physics teaching and learning.




Physics in a New Era


Book Description

Physics at the beginning of the twenty-first century has reached new levels of accomplishment and impact in a society and nation that are changing rapidly. Accomplishments have led us into the information age and fueled broad technological and economic development. The pace of discovery is quickening and stronger links with other fields such as the biological sciences are being developed. The intellectual reach has never been greater, and the questions being asked are more ambitious than ever before. Physics in a New Era is the final report of the NRC's six-volume decadal physics survey. The book reviews the frontiers of physics research, examines the role of physics in our society, and makes recommendations designed to strengthen physics and its ability to serve important needs such as national security, the economy, information technology, and education.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




Inquiry-Based Learning for Science, Technology, Engineering, and Math (STEM) Programs


Book Description

This volume covers the many issues and concepts of how IBL can be applied to STEM programs and serves as a conceptual and practical resource and guide for educators and offers practical examples of IBL in action and diverse strategies on how to implement IBL in different contexts.




Connecting Science and Engineering Education Practices in Meaningful Ways


Book Description

The need for a scientifically literate citizenry, one that is able to think critically and engage productively in the engineering design process, has never been greater. By raising engineering design to the same level as scientific inquiry the Next Generation Science Standards’ (NGSS) have signaled their commitment to the integration of engineering design into the fabric of science education. This call has raised many critical questions...How well do these new standards represent what actually engineers do? Where do the deep connections among science and engineering practices lie? To what extent can (or even should) science and engineering practices co-exist in formal and informal educational spaces? Which of the core science concepts are best to leverage in the pursuit of coherent and compelling integration of engineering practices? What science important content may be pushed aside? This book, tackles many of these tough questions head on. All of the contributing authors consider the same core question: Given the rapidly changing landscape of science education, including the elevated status of engineering design, what are the best approaches to the effective integration of the science and engineering practices? They answered with rich descriptions of pioneering approaches, critical insights, and useful practical examples of how embodying a culture of interdisciplinarity and innovation can fuel the development of a scientifically literate citizenry . This collection of work builds traversable bridges across diverse research communities and begins to break down long standing disciplinary silos that have historically often hamstrung well-meaning efforts to bring research and practice from science and engineering together in meaningful and lasting ways.




Design-Based Concept Learning in Science and Technology Education


Book Description

Design-Based Concept Learning in Science and Technology Education brings together contributions from researchers that have investigated what conditions need to be fulfilled to make design-based education work.




Simulation and Learning


Book Description

The main idea of this book is that to comprehend the instructional potential of simulation and to design effective simulation-based learning environments, one has to consider both what happens inside the computer and inside the students' minds. The framework adopted to do this is model-centered learning, in which simulation is seen as particularly effective when learning requires a restructuring of the individual mental models of the students, as in conceptual change. Mental models are by themeselves simulations, and thus simulation models can extend our biological capacity to carry out simulative reasoning. For this reason, recent approaches in cognitive science like embodied cognition and the extended mind hypothesis are also considered in the book.. A conceptual model called the “epistemic simulation cycle” is proposed as a blueprint for the comprehension of the cognitive activies involved in simulation-based learning and for instructional design.




The Impact of the Laboratory and Technology on Learning and Teaching Science K-16


Book Description

The Impact of the Laboratory and Technology on K-12 Science Learning and Teaching examines the development, use, and influence of active laboratory experiences and the integration of technology in science teaching. This examination involves the viewpoints of policymakers, researchers, and teachers that are expressed through research involving original documents, interviews, analysis and synthesis of the literature, case studies, narrative studies, observations of teachers and students, and assessment of student learning outcomes. Volume 3 of the series, Research in Science Education, addresses the needs of various constituencies including teachers, administrators, higher education science and science education faculty, policymakers, governmental and professional agencies, and the business community. The guiding theme of this volume is the role of practical laboratory work and the use of technology in science learning and teaching, K-16. The volume investigates issues and concerns related to this theme through various perspectives addressing design, research, professional practice, and evaluation. Beginning with definitions, the historical evolution and policy guiding these learning experiences are explored from several viewpoints. Effective design and implementation of laboratory work and technology experiences is examined for elementary and high school classrooms as well as for undergraduate science laboratories, informal settings, and science education courses and programs. In general, recent research provides evidence that students do benefit from inquirybased laboratory and technology experiences that are integrated with classroom science curricula. The impact and status of laboratory and technology experiences is addressed by exploring specific strategies in a variety of scientific fields and courses. The chapters outline and describe in detail researchbased best practices for a variety of settings.




Teacher Learning That Matters


Book Description

In the continuing global call for educational reforms and change, the contributors in this edited collection address the critical issue of teacher learning from diverse national contexts and perspectives. They define "teacher learning that matters" as it shapes and directs pedagogical practices with the goal of improving student learning. This book weaves together major studies, research findings and theoretical orientations to represent a globalized network of inquiries into the what, how and why of teacher learning that shapes teacher skill and knowledge. Teacher learning matters on an international scale because teachers are the portals through which any initiative for change and reform is realized. Recognizing that a highly skilled teaching force is instrumental to improving student achievement adds import to generating interactive dialogue on teacher learning around the globe.




Engineering in Pre-college Settings


Book Description

In science, technology, engineering, and mathematics (STEM) education in pre-college, engineering is not the silent "e" anymore. There is an accelerated interest in teaching engineering in all grade levels. Structured engineering programs are emerging in schools as well as in out-of-school settings. Over the last ten years, the number of states in the US including engineering in their K-12 standards has tripled, and this trend will continue to grow with the adoption of the Next Generation Science Standards. The interest in pre-college engineering education stems from three different motivations. First, from a workforce pipeline or pathway perspective, researchers and practitioners are interested in understanding precursors, influential and motivational factors, and the progression of engineering thinking. Second, from a general societal perspective, technological literacy and understanding of the role of engineering and technology is becoming increasingly important for the general populace, and it is more imperative to foster this understanding from a younger age. Third, from a STEM integration and education perspective, engineering processes are used as a context to teach science and math concepts. This book addresses each of these motivations and the diverse means used to engage with them.Designed to be a source of background and inspiration for researchers and practitioners alike, this volume includes contributions on policy, synthesis studies, and research studies to catalyze and inform current efforts to improve pre-college engineering education. The book explores teacher learning and practices, as well as how student learning occurs in both formal settings, such as classrooms, and informal settings, such as homes and museums. This volume also includes chapters on assessing design and creativity.