Conceptual Design of Distillation Systems with CD-ROM


Book Description

This book is a pioneering effort by two of the world's top researchers. The authors have fashioned a text which develops models, the basis for software tools for conceptual design. The book clearly addresses both analysis and design with sharp attention to supplying mathematical correctness and providing physical insight. A software supplement accompanies the text in a student version.







Conceptual Design of Chemical Processes


Book Description

This text explains the concepts behind process design. It uses a case study approach, guiding readers through realistic design problems, and referring back to these cases at the end of each chapter. Throughout, the author uses shortcut techniques that allow engineers to obtain the whole focus for a design in a very short period (generally less than two days).




23 European Symposium on Computer Aided Process Engineering


Book Description

Reactive Distillation (RD) which combines reaction and distillation can be advantageously used to obtain desired selectivities in case of multi-reaction system. In case of azeotropic systems, the presence of complex vapor liquid equilibrium and distillation boundaries, shrink the feasible stage composition region and thereby increase design complexity for RD systems. Therefore an attempt is made here to develop a conceptual design algorithm based on boundary value method for the synthesis of single feed hybrid reactive distillation (HRD) column to obtain desired selectivities in case of single reactant complex reaction scheme (vande Vusse reaction) involving azeotropic systems. This work is the continuation of our earlier work on ideal multicomponent system (). We believe that the conceptual design algorithm developed here can be extended to more complex schemes involving multiple reactants.




Distillation


Book Description

Distillation: Fundamentals and Principles — winner of the 2015 PROSE Award in Chemistry & Physics — is a single source of authoritative information on all aspects of the theory and practice of modern distillation, suitable for advanced students and professionals working in a laboratory, industrial plants, or a managerial capacity. It addresses the most important and current research on industrial distillation, including all steps in process design (feasibility study, modeling, and experimental validation), together with operation and control aspects. This volume features an extra focus on the conceptual design of distillation. Winner of the 2015 PROSE Award in Chemistry & Physics from the Association of American Publishers Practical information on the newest development written by recognized experts Coverage of a huge range of laboratory and industrial distillation approaches Extensive references for each chapter facilitates further study




Reactive Distillation Design and Control


Book Description

After an overview of the fundamentals, limitations, and scope of reactive distillation, this book uses rigorous models for steady-state design and dynamic analysis of different types of reactive distillation columns and quantitatively compares the economics of reactive distillation columns with conventional multi-unit processes. It goes beyond traditional steady-state design that primarily considers the capital investment and energy costs when analyzing the control structure and the dynamic robustness of disturbances, and discusses how to maximize the economic and environmental benefits of reactive distillation technology.




Distillation and Absorption 2006


Book Description

This work contains the proceedings of the Distillation and Absorption conference, which happens every 5 years. This collection of 100 contributions spanning 23 countries showcase the newest and best distillation and absorption technologies which cover a broad range of fundamental and applied aspects of the technology. To address these aspects, the contributions have been put into seven themes: modelling and simulation (steady-state, dynamic and CFD); energy efficiency and sustainability; equipment design and operation; integrated, hybrid and novel processes; process troubleshooting and handling operational problems; control and operation; and basic data.







Understanding Distillation Using Column Profile Maps


Book Description

Researchers share their pioneering graphical method for designing almost any distillation structure Developed by the authors in collaboration with other researchers at the Centre of Material and Process Synthesis, column profile maps (CPMs) enable chemical engineers to design almost any distillation structure using novel graphical techniques. The CPM method offers tremendous advantages over other design methods because it is generalized and not constrained to a particular piece of equipment. Understanding Distillation Using Column Profile Maps enables readers to understand, analyze, and design distillation structures to solve common distillation problems, including distillation by simple columns, side rectifiers and strippers, multiple feed columns, and fully thermally coupled columns. In addition, the book presents advanced topics such as reactive distillation, membrane permeation, and validation of thermodynamic models. For all these processes, the authors set forth easy-to-follow design techniques, solution strategies, and insights gained using CPMs. This book offers everything needed to fully understand and use CPMs as a design tool: Figures help readers understand how to use CPMs as design and optimization tools Examples clearly illustrate how to solve specific problems using CPMs Tutorials allow readers to explore key concepts through experimentation Design and Optimization of Distillation Systems software package, developed for this book, enables readers to reproduce the examples in the book, follow the tutorials, and begin designing their own distillation systems With its many examples and step-by-step tutorials, Understanding Distillation Using Column Profile Maps is recommended for students in chemical engineering in advanced undergraduate and graduate courses. The book also provides new practical techniques that can be immediately applied by chemical engineering professionals in industry.




Design and Control of Distillation Systems for Separating Azeotropes


Book Description

Hands-on guidance for the design, control, and operation of azeotropic distillation systems Following this book's step-by-step guidance, readers learn to master tested and proven methods to overcome a major problem in chemical processing: the distillation and separation of azeotropes. Practical in focus, the book fully details the design, control, and operation of azeotropic distillation systems, using rigorous steady-state and dynamic simulation tools. Design and Control of Distillation Systems for Separating Azeotropes is divided into five parts: Fundamentals and tools Separations without adding other components Separations using light entrainer (heterogeneous azeotropic distillation) Separations using heavy entrainer (extractive distillation) Other ways for separating azeotropes The distillation methods presented cover a variety of important industrial chemical systems, including the processing of biofuels. For most of these chemical systems, the authors explain how to achieve economically optimum steady-state designs. Moreover, readers learn how to implement practical control structures that provide effective load rejection to manage disturbances in throughput and feed composition. Trade-offs between steady-state energy savings and dynamic controllability are discussed, helping readers design and implement the distillation system that best meets their particular needs. In addition, economic and dynamic comparisons between alternative methods are presented, including an example of azeotropic distillation versus extractive distillation for the isopropanol/water system. With its focus on practical solutions, Design and Control of Distillation Systems for Separating Azeotropes is ideal for engineers facing a broad range of azeotropic separation problems. Moreover, this book is recommended as a supplemental text for undergraduate and graduate engineering courses in design, control, mass transfer, and bio-processing.