Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets


Book Description

Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets integrates state-of-the-art information and discusses future developments and their significance to the improvement of the renewable energy industry. Renewable energy assets are complex systems with several critical components that require inspection and adequate maintenance in order to ensure their high availability and uninterrupted operation. This is the first book to apply NDT and condition monitoring to these complex systems. - Covers inspection and condition monitoring for a broad range of renewable energy systems, including wind turbines, wave energy devices, CSP and photovoltaic plants, and biofuel/biomass power plants - Includes a review of common types of NDT techniques - Discusses future developments in NDT and condition monitoring for renewable energy systems




Vibration-Based Condition Monitoring of Wind Turbines


Book Description

This book describes in detail different types of vibration signals and the signal processing methods, including signal resampling and signal envelope, used for condition monitoring of drivetrains. A special emphasis is placed on wind turbines and on the fact that they work in highly varying operational conditions. The core of the book is devoted to cutting-edge methods used to validate and process vibration data in these conditions. Key case studies, where advanced signal processing methods are used to detect failures of gearboxes and bearings of wind turbines, are described and discussed in detail. Vibration sensors, SCADA (Supervisory Control and Data Acquisition), portable data analyzers and online condition monitoring systems, are also covered. This book offers a timely guide to both researchers and professionals working with wind turbines (but also other machines), and to graduate students willing to extend their knowledge in the field of vibration analysis.




IoT and Analytics in Renewable Energy Systems (Volume 1)


Book Description

Smart grid technologies include sensing and measurement technologies, advanced components aided with communications and control methods along with improved interfaces and decision support systems. Smart grid techniques support the extensive inclusion of clean renewable generation in power systems. Smart grid use also promotes energy saving in power systems. Cyber security objectives for the smart grid are availability, integrity and confidentiality. Five salient features of this book are as follows: AI and IoT in improving resilience of smart energy infrastructure IoT, smart grids and renewable energy: an economic approach AI and ML towards sustainable solar energy Electrical vehicles and smart grid Intelligent condition monitoring for solar and wind energy systems




Energy and Sustainable Futures


Book Description

This open access book presents papers displayed in the 2nd International Conference on Energy and Sustainable Futures (ICESF 2020), co-organised by the University of Hertfordshire and the University Alliance DTA in Energy. The research included in this book covers a wide range of topics in the areas of energy and sustainability including: • ICT and control of energy;• conventional energy sources;• energy governance;• materials in energy research;• renewable energy; and• energy storage. The book offers a holistic view of topics related to energy and sustainability, making it of interest to experts in the field, from industry and academia.




Intelligent Renewable Energy Systems


Book Description

Focused on renewable energy systems and the development of information and communication technologies (ICTs) for their integration in smart grids, this book presents recent advances and methods that help to ensure that power generation from renewable sources remains stable, that power losses are minimized, and that the reliable functioning of these power generation units is maintained. The book highlights key topics and technologies for renewable energy systems including the intelligent control of power generators, power electronics that connect renewable power generation units to the grid, and fault diagnosis for power generators and power electronics. In particular, the following topics are addressed: • Modeling and control of power generators (PMSGs, DFIGs); • Modeling and control of power electronics (converters, inverters); • Modeling and fault diagnosis of the transmission and distribution Grid; and • Modelling and control of distributed power generation units (interconnected synchronous generators or photovoltaic units). Because of the above coverage, members of the wider engineering community will find that the nonlinear control and estimation methods presented provide essential insights into the functioning of renewable energy power systems, while the academic community will find the book a valuable textbook for undergraduate or graduate courses on renewable energy systems.







Use, Operation and Maintenance of Renewable Energy Systems


Book Description

This book addresses the use, operation and maintenance of new renewable energy systems, taking into account their integration in the current electrical markets and in the new emergent uses of energy. The book is based on practical experiences which present different perspectives about what occurs once an energy production plant based on sources of renewable energy is in production. Questions to be addressed include: how the energy produced is integrated into the current system of energy production, what is its consideration in the electrical market, what the impact is on society, how differential the strategies of operation and maintenance are with respect to conventional systems of energy production, etc.




Operation and Control of Renewable Energy Systems


Book Description

A comprehensive reference to renewable energy technologies with a focus on power generation and integration into power systems This book addresses the generation of energy (primarily electrical) through various renewable sources. It discusses solar and wind power—two major resources that are now in use in small as well as large-scale power production—and their requirements for effectively using advanced control techniques.In addition, the book looks at theintegration of renewable energy in the power grid and its ability to work in a micro grid. Operation and Control of Renewable Energy Systems describes the numerous types of renewable energy sources available and the basic principles involving energy conversion, including the theory of fluid mechanics and the laws of thermodynamics. Chapter coverage includes the theory of power electronics and various electric power generators, grid scale energy storage systems, photovoltaic power generation, solar thermal energy conversion technology, horizontal and vertical wind turbines for power generation, and more. Covers integration into power systems with an emphasis on microgrids Introduces a wide range of subjects related to renewable energy systems, including energy storage, microgrids, and battery technologies Includes tutorial materials such as up-to-date references for wind energy, grid connection, and power electronics—plus worked examples and solutions Operation and Control of Renewable Energy Systems is the perfect introduction to renewable energy technologies for undergraduate and graduate students and can also be very useful to practicing engineers.