Electroluminescent Displays


Book Description

This book discusses recent developments in electroluminescent (EL) displays, in particular thin-film EL displays, which are all-solid emissive displays with fast response, wide viewing angle, high resolution, wide operating temperature ranges and good display qualities. First, the characteristics of four types of EL devices are presented, and the physics of ac thin-film EL devices are detailed, including ideal models, measuring and evaluation methods, high-field electronic transport and properties of phosphor materials. The book emphasizes recent developments in phosphor materials for color thin-film EL devices based on ZnS, SrS, CaS and CaGa2S4, and multicolor thin-film EL panels in four-panel structures. Other important features discussed are drive methods and reliability issues.







Introduction to Flat Panel Displays


Book Description

Flat Panel Displays (FPDs) are a frequent feature in our daily lives, used in mobile phones, laptop computers, desktop computer monitors and TVs. Several display technologies have been developed for FPDs, such as liquid crystal display (LCD), plasma display panel (PDP), light emitting diode (LED), organic light emitting device (OLED) and field emission display (FED). Introduction to Flat Panel Displays describes the fundamental sciences behind each display technology: LCD, PDP, LED, OLED and FED including carbon nanotubes. It contains a comparative analysis of the different display technologies in which detailed overviews of each technology are linked together so as to provide a comprehensive reference for students and display engineers, alike. Solved problems as well as homework problems are provided in each chapter to help consolidate students’ reading, as well as solutions hosted on an accompanying website. Features include: the classifications and specifications of display technologies as guidelines for developing a display and judging their performances; principles for designing color displays with good color saturation and wide color gamut; basic operating principles of thin-film transistors (TFTs) and their applications to state-of-the-art TFT-LCD and TFT-OLED; an overview of FED fundamentals comprising the physics of field emission, as well as FED structure and display mechanism. Senior undergraduate and graduate students taking courses in engineering, physics and chemistry will benefit from the systematic approach used throughout the book, which will help to prepare students for entry into a display profession. Display engineers, research scientists and technicians working on the development of flat panel display technology will also find this book an invaluable resource. Comparisons of the strengths and weaknesses of each of the display technologies will help professionals to decide which to use for their applications. The Society for Information Display (SID) is an international society, which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics




Addressing Techniques of Liquid Crystal Displays


Book Description

Unique reference source that can be used from the beginning to end of a design project to aid choosing an appropriate LCD addressing technique for a given application This book will be aimed at design engineers who are likely to embed LCD drivers and controllers in many systems including systems on chip. Such designers face the challenge of making the right choice of an addressing technique that will serve them with best performance at minimal cost and complexity. Readers will be able to learn about various methods available for driving matrix LCDs and the comparisons at the end of each chapter will aid readers to make an informed design choice. The book will address the various driving techniques related to LCDs. Due to the non-linear response of the liquid crystal to external voltages, different driving methods such as passive and active matrix driving can be utilized. The associated theoretical basis of these driving techniques is introduced, and this theoretical analysis is supplemented by information on the implementation of drivers and controllers to link the theory to practice. Written by an experienced research scientist with over 30 years in R&D in this field. Acts as an exhaustive review and comparison of techniques developed for passive-matrix addressing of twisted nematic and super-twisted nematic (STN) LCDs. Discusses the trend towards "High Definition" displays and that a hybrid approach to drive matrix LCDs (combination of active and passive matrix addressing) will be the future of LCD addressing. Contains the author’s recent work on Bit-Slice Addressing that is useful for fast responding LCDs, as well as a chapter on driving ferroelectric LCDs Provides an objective comparison that will enable designers to make an informed choice of an addressing technique for a specific application. Includes examples of the practical applications of addressing techniques. Organised in a way that each chapter can be read independently; with the basic knowledge and historical background gained from the introductory chapters, adequate for understanding the techniques that are presented in the remaining chapters making it a self-contained reference.




Science Abstracts


Book Description










Handbook of Electroluminescent Materials


Book Description

An electroluminescent (EL) material is one that emits electromagnetic (EM) radiation in the visible or near visible range when an electric field is applied to it. EL materials have a vast array of applications in the illumination and displays industries, from cheap and energy efficient lighting to large high resolution flat panel displays.




Index to IEEE Publications


Book Description

Issues for 1973- cover the entire IEEE technical literature.