Connected and Automated Vehicles


Book Description

These discussions are technologically interdisciplinary and procedurally cross-functional, hence the need for CAV: Developing Policies, Designing Programs, and Deploying Projects.This book is aimed at the policy-maker who wants to know the high-level detail; the planner who chooses to pursue the most efficient path to implementation; the professional engineer who needs to design a sustainable system; the practitioner who considers deployable frameworks; the project manager who oversees the system deployment; the private sector consultant who develops and delivers a CAV program; and the researcher who evaluates the project benefits and documents lessons learned. .




Autonomous Vehicles and Future Mobility


Book Description

Autonomous Vehicles and Future Mobility presents novel methods for examining the long-term effects on individuals, society, and on the environment for a wide range of forthcoming transport scenarios, such as self-driving vehicles, workplace mobility plans, demand responsive transport analysis, mobility as a service, multi-source transport data provision, and door-to-door mobility. With the development and realization of new mobility options comes change in long-term travel behavior and transport policy. This book addresses these impacts, considering such key areas as the attitude of users towards new services, the consequences of introducing new mobility forms, the impacts of changing work related trips, and more. By examining and contextualizing innovative transport solutions in this rapidly evolving field, the book provides insights into the current implementation of these potentially sustainable solutions. It will serve as a resource of general guidelines and best practices for researchers, professionals and policymakers.




AVENUE21. Connected and Automated Driving: Prospects for Urban Europe


Book Description

This open access publication examines the impact of connected and automated vehicles on the European city and the conditions that can enable this technology to make a positive contribution to urban development. The authors argue for two theses that have thus far received little attention in scientific discourse: as connected and automated vehicles will not be ready for use in all parts of the city for a long time, previously assumed effects – from traffic safety to traffic performance as well as spatial effects – will need to be re-evaluated. To ensure this technology has a positive impact on the mobility of the future, transport and settlement policy regulations must be adapted and further developed. Established territorial, institutional and organizational boundaries must be investigated and challenged quickly. Despite – or, indeed, because of – the many uncertainties, we find ourselves at the beginning of a new design phase, not only in terms of technology development, but also regarding politics, urban planning, administration and civil society.




Cellular V2X for Connected Automated Driving


Book Description

CELLULAR V2X FOR CONNECTED AUTOMATED DRIVING A unique examination of cellular communication technologies for connected automated driving, combining expert insights from telecom and automotive industries as well as technical and scientific knowledge from industry and academia Cellular vehicle-to-everything (C-V2X) technologies enable vehicles to communicate both with the network, with each other, and with other road users using reliable, responsive, secure, and high-capacity communication links. Cellular V2X for Connected Automated Driving provides an up-to-date view of the role of C-V2X technologies in connected automated driving (CAD) and connected road user (CRU) services, such as advanced driving support, improved road safety, infotainment, over-the-air software updates, remote driving, and traffic efficiency services enabling the future large-scale transition to self-driving vehicles. This timely book discusses where C-V2X technology is situated within the increasingly interconnected ecosystems of the mobile communications and automotive industries. An expert contributor team from both industry and academia explore potential applications, business models, standardization, spectrum and channel modelling, network enhancements, security and privacy, and more. Broadly divided into two parts—introductory and advanced material—the text first introduces C-V2X technology and introduces a variety of use cases and opportunities, requiring no prerequisite technical knowledge. The second part of the book assumes a basic understanding of the field of telecommunications, presenting technical descriptions of the radio, system aspects, and network design for the previously discussed applications. This up-to-date resource: Provides technical details from the finding of the European Commission H2020 5G PPP 5GCAR project, a collaborative research initiative between the telecommunications and automotive industries and academic researchers Elaborates on use cases, business models, and a technology roadmap for those seeking to shape a start-up in the area of automated and autonomous driving Provides up to date descriptions of standard specifications, standardization and industry organizations and important regulatory aspects for connected vehicles Provides technical insights and solutions for the air interface, network architecture, positioning and security to support vehicles at different automation levels Includes detailed tables, plots, and equations to clarify concepts, accompanied by online tutorial slides for use in teaching and seminars Thanks to its mix of introductory content and technical information, Cellular V2X for Connected Automated Driving is a must-have for industry and academic researchers, telecom and automotive industry practitioners, leaders, policymakers, and regulators, and university-level instructors and students. Additional resources available at the following site: Cellular V2X for Connected Automated Driving – 5GCAR




Autonomous Driving


Book Description

This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the authors demonstrate that these benefits will only be achieved if vehicles have an appropriate safety concept at the heart of their design. Realizing the potential of automated vehicles to reorganize traffic and transform mobility of people and goods requires similar care in the design of vehicles and networks. By covering all of these topics, the book aims to provide a current, comprehensive, and scientifically sound treatment of the emerging field of “autonomous driving".




Autonomous Vehicle Technology


Book Description

The automotive industry appears close to substantial change engendered by “self-driving” technologies. This technology offers the possibility of significant benefits to social welfare—saving lives; reducing crashes, congestion, fuel consumption, and pollution; increasing mobility for the disabled; and ultimately improving land use. This report is intended as a guide for state and federal policymakers on the many issues that this technology raises.




Autonomous and Connected Heavy Vehicle Technology


Book Description

Autonomous and Connected Heavy Vehicle Technology presents the fundamentals, definitions, technologies, standards and future developments of autonomous and connected heavy vehicles. This book provides insights into various issues pertaining to heavy vehicle technology and helps users develop solutions towards autonomous, connected, cognitive solutions through the convergence of Big Data, IoT, cloud computing and cognition analysis. Various physical, cyber-physical and computational key points related to connected vehicles are covered, along with concepts such as edge computing, dynamic resource optimization, engineering process, methodology and future directions. The book also contains a wide range of case studies that help to identify research problems and an analysis of the issues and synthesis solutions. This essential resource for graduate-level students from different engineering disciplines such as automotive and mechanical engineering, computer science, data science and business analytics combines both basic concepts and advanced level content from technical experts. Covers state-of-the-art developments and research in vehicle sensor technology, vehicle communication technology, convergence with emerging technologies, and vehicle software and hardware integration Addresses challenges such as optimization, real-time control systems for distance and steering mechanism, and cognitive and predictive analysis Provides complete product development, commercial deployment, technological and performing costs and scaling needs




The Law and Autonomous Vehicles


Book Description

When will we see autonomous vehicles on our roads? The answer is that to some degree, they are already here. Numerous organisations are testing fully autonomous prototypes on public roads in the UK, and even commercially available vehicles already have several ‘quasi-autonomous’ features. KPMG has forecasted that the connected and autonomous vehicles market could be worth as much as £51 billion to the British economy by 2030 and could create some 30,000 new jobs over the same period. Accordingly, the UK and a number of other jurisdictions are already implementing legal reforms with a view to smoothing the path for this technology. Notably, Parliament has passed the Automated and Electric Vehicles Act 2018 dealing with the insurance of such vehicles, and changes are currently being made to the Road Vehicle (Construction and Use) Regulations 1986 and to the Highway Code to accommodate highly automated technologies. The government has also issued non-statutory guidance in relation to testing on public roads, and in relation to vehicle cybersecurity. Against this rapidly changing landscape, this book analyses the key legal issues facing autonomous vehicles, including testing on public roads, insurance, product liability, and cyber security and data protection. It also examines the approach being taken in other jurisdictions, including Austria, Germany, Greece, Italy, the USA, and South Africa.




Energy-Efficient Driving of Road Vehicles


Book Description

This book elaborates the science and engineering basis for energy-efficient driving in conventional and autonomous cars. After covering the physics of energy-efficient motion in conventional, hybrid, and electric powertrains, the book chiefly focuses on the energy-saving potential of connected and automated vehicles. It reveals how being connected to other vehicles and the infrastructure enables the anticipation of upcoming driving-relevant factors, e.g. hills, curves, slow traffic, state of traffic signals, and movements of nearby vehicles. In turn, automation allows vehicles to adjust their motion more precisely in anticipation of upcoming events, and to save energy. Lastly, the energy-efficient motion of connected and automated vehicles could have a harmonizing effect on mixed traffic, leading to additional energy savings for neighboring vehicles. Building on classical methods of powertrain modeling, optimization, and optimal control, the book further develops the theory of energy-efficient driving. In addition, it presents numerous theoretical and applied case studies that highlight the real-world implications of the theory developed. The book is chiefly intended for undergraduate and graduate engineering students and industry practitioners with a background in mechanical, electrical, or automotive engineering, computer science or robotics.