Branching Morphogenesis


Book Description

Branching morphogenesis, the creation of branched structures in the body, is a key feature of animal and plant development. This book brings together, for the first time, expert researchers working on a variety of branching systems to present a state-of-the-art view of the mechanisms that control branching morphogenesis. Systems considered range from single cells, to blood vessel and drainage duct systems to entire body plans, and approaches range from observation through experiment to detailed biophysical modelling. The result is an integrated overview of branching.




The Theoretical Foundation of Dendritic Function


Book Description

This collection of fifteen previously published papers, some of them not widely available, have been carefully chosen and annotated by Rall's colleagues and other leading neuroscientists.




Molecular Mechanisms of Neural Development and Insights into Disease


Book Description

Neural Development and Disease, Volume 142 in the Current Topics in Developmental Biology series highlights new advances in the field, with this new volume presenting interesting chapters by one or more members of an international board of authors. Sections in this new release cover The role of primary cilia in neural development and disease, Mechanisms of axon guidance receptor regulation and signaling, Synaptic recognition molecules in development and disease, The regulation of cortical neurogenesis, Axon guidance in the developing spinal cord, The role of astrocytes in synapse formation and maturation, Development of motor circuits, Molecular mechanisms that mediate dendrite morphogenesis, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Current Topics in Developmental Biology series







Neurogenesis and Neural Plasticity


Book Description

This volume brings together authors working on a wide range of topics to provide an up to date account of the underlying mechanisms and functions of neurogenesis and synaptogenesis in the adult brain. With an increasing understanding of the role of neurogenesis and synaptogenesis it is possible to envisage improvements or novel treatments for a number of diseases and the possibility of harnessing these phenomena to reduce the impact of ageing and to provide mechanisms to repair the brain.




Biology of the NMDA Receptor


Book Description

The NMDA receptor plays a critical role in the development of the central nervous system and in adult neuroplasticity, learning, and memory. Therefore, it is not surprising that this receptor has been widely studied. However, despite the importance of rhythms for the sustenance of life, this aspect of NMDAR function remains poorly studied. Written




Dendrites


Book Description

Dendrites form the major receiving part of neurons. This text presents a survey of knowledge on dendrites, from their morphology and development, through to their electrical chemical, and computational properties.




Structural DNA Nanotechnology


Book Description

Written by the founder of the field, this is a comprehensive and accessible introduction to structural DNA nanotechnology.




Synapse Development


Book Description

This detailed volume collects protocols for experimentation into how neurons connect to produce the extraordinary functionalities of the nervous system. Contributed by experts and pioneers in their respective techniques, the book covers synapses in the brain and in culture, their constituents, their structures, their dynamics, and the assemblies they form, all in the structure of a laboratory guide. Written for the highly successful Methods in Molecular Biology series, chapters include brief introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synapse Development: Methods and Protocols serves as an ideal guide to minimizing the barrier to entry for the integration of new approaches with existing expertise, producing syntheses that will foster novel perspectives on the many ways in which synapses form, transform, and transmit.