Continuous Models for Cameras and Inertial Sensors


Book Description

Using images to reconstruct the world in three dimensions is a classical computer vision task. Some examples of applications where this is useful are autonomous mapping and navigation, urban planning, and special effects in movies. One common approach to 3D reconstruction is ”structure from motion” where a scene is imaged multiple times from different positions, e.g. by moving the camera. However, in a twist of irony, many structure from motion methods work best when the camera is stationary while the image is captured. This is because the motion of the camera can cause distortions in the image that lead to worse image measurements, and thus a worse reconstruction. One such distortion common to all cameras is motion blur, while another is connected to the use of an electronic rolling shutter. Instead of capturing all pixels of the image at once, a camera with a rolling shutter captures the image row by row. If the camera is moving while the image is captured the rolling shutter causes non-rigid distortions in the image that, unless handled, can severely impact the reconstruction quality. This thesis studies methods to robustly perform 3D reconstruction in the case of a moving camera. To do so, the proposed methods make use of an inertial measurement unit (IMU). The IMU measures the angular velocities and linear accelerations of the camera, and these can be used to estimate the trajectory of the camera over time. Knowledge of the camera motion can then be used to correct for the distortions caused by the rolling shutter. Another benefit of an IMU is that it can provide measurements also in situations when a camera can not, e.g. because of excessive motion blur, or absence of scene structure. To use a camera together with an IMU, the camera-IMU system must be jointly calibrated. The relationship between their respective coordinate frames need to be established, and their timings need to be synchronized. This thesis shows how to automatically perform this calibration and synchronization, without requiring e.g. calibration objects or special motion patterns. In standard structure from motion, the camera trajectory is modeled as discrete poses, with one pose per image. Switching instead to a formulation with a continuous-time camera trajectory provides a natural way to handle rolling shutter distortions, and also to incorporate inertial measurements. To model the continuous-time trajectory, many authors have used splines. The ability for a spline-based trajectory to model the real motion depends on the density of its spline knots. Choosing a too smooth spline results in approximation errors. This thesis proposes a method to estimate the spline approximation error, and use it to better balance camera and IMU measurements, when used in a sensor fusion framework. Also proposed is a way to automatically decide how dense the spline needs to be to achieve a good reconstruction. Another approach to reconstruct a 3D scene is to use a camera that directly measures depth. Some depth cameras, like the well-known Microsoft Kinect, are susceptible to the same rolling shutter effects as normal cameras. This thesis quantifies the effect of the rolling shutter distortion on 3D reconstruction, depending on the amount of motion. It is also shown that a better 3D model is obtained if the depth images are corrected using inertial measurements. Att använda bilder för att återskapa världen omkring oss i tre dimensioner är ett klassiskt problem inom datorseende. Några exempel på användningsområden är inom navigering och kartering för autonoma system, stadsplanering och specialeffekter för film och spel. En vanlig metod för 3D-rekonstruktion är det som kallas ”struktur från rörelse”. Namnet kommer sig av att man avbildar (fotograferar) en miljö från flera olika platser, till exempel genom att flytta kameran. Det är därför något ironiskt att många struktur-från-rörelse-algoritmer får problem om kameran inte är stilla när bilderna tas, exempelvis genom att använda sig av ett stativ. Anledningen är att en kamera i rörelse ger upphov till störningar i bilden vilket ger sämre bildmätningar, och därmed en sämre 3D-rekonstruktion. Ett välkänt exempel är rörelseoskärpa, medan ett annat är kopplat till användandet av en elektronisk rullande slutare. I en kamera med rullande slutare avbildas inte alla pixlar i bilden samtidigt, utan istället rad för rad. Om kameran rör på sig medan bilden tas uppstår därför störningar i bilden som måste tas om hand om för att få en bra rekonstruktion. Den här avhandlingen berör robusta metoder för 3D-rekonstruktion med rörliga kameror. En röd tråd inom arbetet är användandet av en tröghetssensor (IMU). En IMU mäter vinkelhastigheter och accelerationer, och dessa mätningar kan användas för att bestämma hur kameran har rört sig över tid. Kunskap om kamerans rörelse ger möjlighet att korrigera för störningar på grund av den rullande slutaren. Ytterligare en fördel med en IMU är att den ger mätningar även i de fall då en kamera inte kan göra det. Exempel på sådana fall är vid extrem rörelseoskärpa, starkt motljus, eller om det saknas struktur i bilden. Om man vill använda en kamera tillsammans med en IMU så måste dessa kalibreras och synkroniseras: relationen mellan deras respektive koordinatsystem måste bestämmas, och de måste vara överens om vad klockan är. I den här avhandlingen presenteras en metod för att automatiskt kalibrera och synkronisera ett kamera-IMU-system utan krav på exempelvis kalibreringsobjekt eller speciella rörelsemönster. I klassisk struktur från rörelse representeras kamerans rörelse av att varje bild beskrivs med en kamera-pose. Om man istället representerar kamerarörelsen som en tidskontinuerlig trajektoria kan man på ett naturligt sätt hantera problematiken kring rullande slutare. Det gör det också enkelt att införa tröghetsmätningar från en IMU. En tidskontinuerlig kameratrajektoria kan skapas på flera sätt, men en vanlig metod är att använda sig av så kallade splines. Förmågan hos en spline att representera den faktiska kamerarörelsen beror på hur tätt dess knutar placeras. Den här avhandlingen presenterar en metod för att uppskatta det approximationsfel som uppkommer vid valet av en för gles spline. Det uppskattade approximationsfelet kan sedan användas för att balansera mätningar från kameran och IMU:n när dessa används för sensorfusion. Avhandlingen innehåller också en metod för att bestämma hur tät en spline behöver vara för att ge ett gott resultat. En annan metod för 3D-rekonstruktion är att använda en kamera som också mäter djup, eller avstånd. Vissa djupkameror, till exempel Microsoft Kinect, har samma problematik med rullande slutare som vanliga kameror. I den här avhandlingen visas hur den rullande slutaren i kombination med olika typer och storlekar av rörelser påverkar den återskapade 3D-modellen. Genom att använda tröghetsmätningar från en IMU kan djupbilderna korrigeras, vilket visar sig ge en bättre 3D-modell.




An Invitation to 3-D Vision


Book Description

This book introduces the geometry of 3-D vision, that is, the reconstruction of 3-D models of objects from a collection of 2-D images. It details the classic theory of two view geometry and shows that a more proper tool for studying the geometry of multiple views is the so-called rank consideration of the multiple view matrix. It also develops practical reconstruction algorithms and discusses possible extensions of the theory.




Modelling and Simulation for Autonomous Systems


Book Description

This book constitutes the thoroughly refereed post-workshop proceedings of the Third International Workshop on Modelling and Simulation for Autonomous Systems, MESAS 2016, held in Rome, Italy, in June 2016. The 33 revised full papers included in the volume ware carefully reviewed and selected from 38 submissions. They are organized in the following topical sections: human machine integration and interfaces; autonomous systems and MS frameworks and architectures; autonomous systems principles and algorithms; unmanned aerial vehicles and remotely piloted aircraft systems; modelling and simulation application.




Modern Computer Architecture and Organization


Book Description

A no-nonsense, practical guide to current and future processor and computer architectures that enables you to design computer systems and develop better software applications across a variety of domains Key FeaturesUnderstand digital circuitry through the study of transistors, logic gates, and sequential logicLearn the architecture of x86, x64, ARM, and RISC-V processors, iPhones, and high-performance gaming PCsStudy the design principles underlying the domains of cybersecurity, bitcoin, and self-driving carsBook Description Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You'll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take. What you will learnUnderstand the fundamentals of transistor technology and digital circuitsExplore the concepts underlying pipelining and superscalar processingImplement a complete RISC-V processor in a low-cost FPGAUnderstand the technology used to implement virtual machinesLearn about security-critical computing applications like financial transaction processingGet up to speed with blockchain and the hardware architectures used in bitcoin miningExplore the capabilities of self-navigating vehicle computing architecturesWrite a quantum computing program and run it on a real quantum computerWho this book is for This book is for software developers, computer engineering students, system designers, reverse engineers, and anyone looking to understand the architecture and design principles underlying modern computer systems: ranging from tiny, embedded devices to warehouse-size cloud server farms. A general understanding of computer processors is helpful but not required.




Proceedings of the 8th International Conference on Computational Science and Technology


Book Description

This book gathers the proceedings of the Seventh International Conference on Computational Science and Technology (ICCST 2021), held in Labuan, Malaysia, on 28–29 August 2021. The respective contributions offer practitioners and researchers a range of new computational techniques and solutions, identify emerging issues, and outline future research directions, while also showing them how to apply the latest large-scale, high-performance computational methods.




Computer Vision -- ACCV 2010 Workshops


Book Description

The two-volume set LNCS 6468-6469 contains the carefully selected and reviewed papers presented at the eight workshops that were held in conjunction with the 10th Asian Conference on Computer Vision, in Queenstown, New Zealand, in November 2010. From a total of 167 submissions to all workshops, 89 papers were selected for publication. The contributions are grouped together according to the main workshops topics, which were: computational photography and aesthetics; computer vision in vehicle technology: from Earth to Mars; electronic cultural heritage; subspace based methods; video event categorization, tagging and retrieval; visual surveillance; application of computer vision for mixed and augmented reality.




Road Condition Estimation with Data Mining Methods using Vehicle Based Sensors


Book Description

The work provides novel methods to process inertial sensor and acoustic sensor data for road condition estimation and monitoring with application in vehicles, which serve as sensor platforms. Furthermore, methods are introduced to combine the results from various vehicles for a more reliable estimation.







Proceedings of 2023 Chinese Intelligent Automation Conference


Book Description

The book presents selected research papers from the 2023 Chinese Intelligent Automation Conference (CIAC2023), held in Nanjing, China, on October 2-5, 2023. It covers a wide range of topics including intelligent control, robotics, artificial intelligence, pattern recognition, unmanned systems, IoT, and machine learning. It includes original research and the latest advances in the field of intelligent automation. Engineers and researchers from academia, industry, and government can gain valuable insights into solutions combining ideas from multiple disciplines in this field.




Artificial Intelligence in Higher Education


Book Description

The global adoption of technology in education is transforming the way we teach and learn. Artificial Intelligence is one of the disruptive techniques to customize the experience of different learning groups, teachers, and tutors. This book offers knowledge in intelligent teaching/learning systems, and advances in e-learning and assessment systems. The book highlights the broad field of artificial intelligence applications in education, regarding any type of artificial intelligence that is correlated with education. It discusses learning methodologies, intelligent tutoring systems, intelligent student guidance and assessments, intelligent education chatbots, and artificial tutors and presents the practicality and applicability implications of AI in education. The book offers new and current research along with case studies showing the latest techniques and educational activities. The book will find interest with academicians which includes teachers, students of various disciplines, higher education policymakers who believe in transforming the education industry, and research scholars who are pursuing their Ph.D. or Post Doc. in the field of Education Technology, Education, and Learning, etc. and those working in the area of Education Technology and Artificial Intelligence such industry professionals in education management and e-learning companies.