Sequences, Discrepancies and Applications


Book Description

The main purpose of this book is to give an overview of the developments during the last 20 years in the theory of uniformly distributed sequences. The authors focus on various aspects such as special sequences, metric theory, geometric concepts of discrepancy, irregularities of distribution, continuous uniform distribution and uniform distribution in discrete spaces. Specific applications are presented in detail: numerical integration, spherical designs, random number generation and mathematical finance. Furthermore over 1000 references are collected and discussed. While written in the style of a research monograph, the book is readable with basic knowledge in analysis, number theory and measure theory.




Uniform Distribution of Sequences


Book Description

The theory of uniform distribution began with Hermann Weyl's celebrated paper of 1916. In later decades, the theory moved beyond its roots in diophantine approximations to provide common ground for topics as diverse as number theory, probability theory, functional analysis, and topological algebra. This book summarizes the theory's development from its beginnings to the mid-1970s, with comprehensive coverage of both methods and their underlying principles. A practical introduction for students of number theory and analysis as well as a reference for researchers in the field, this book covers uniform distribution in compact spaces and in topological groups, in addition to examinations of sequences of integers and polynomials. Notes at the end of each section contain pertinent bibliographical references and a brief survey of additional results. Exercises range from simple applications of theorems to proofs of propositions that expand upon results stated in the text.







Proceedings


Book Description




Ergodic Theory


Book Description

This book contains papers written by participants at the two Chapel Hill Ergodic Theory Workshops organized in February 2007 and 2008. The topics covered by these papers help to illustrate the interaction between ergodic theory and related fields such as harmonic analysis, number and probability theories.




Real Analysis


Book Description

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.