Control and Regulation of Stem Cells


Book Description

Based on presentations by world-renowned investigators at the 73rd annual Cold Spring Harbor Symposium on Quantitative Biology, this volume reviews the latest advances in research on the control and regulation of stem cells. The topics covered include nuclear reprogramming, regulation of stem cell self-renewal and differentiation, the stem cell niche, and signaling and gene regulation in stem cells. Studies of embryonic stem cells and adult stem cells are covered, along with research shedding light on the roles of these cells in regeneration and cancer.




Stem Cells and the Future of Regenerative Medicine


Book Description

Recent scientific breakthroughs, celebrity patient advocates, and conflicting religious beliefs have come together to bring the state of stem cell researchâ€"specifically embryonic stem cell researchâ€"into the political crosshairs. President Bush's watershed policy statement allows federal funding for embryonic stem cell research but only on a limited number of stem cell lines. Millions of Americans could be affected by the continuing political debate among policymakers and the public. Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells. In terms accessible to lay readers, the book summarizes what we know about adult and embryonic stem cells and discusses how to go about the transition from mouse studies to research that has therapeutic implications for people. Perhaps most important, Stem Cells and the Future of Regenerative Medicine also provides an overview of the moral and ethical problems that arise from the use of embryonic stem cells. This timely book compares the impact of public and private research funding and discusses approaches to appropriate research oversight. Based on the insights of leading scientists, ethicists, and other authorities, the book offers authoritative recommendations regarding the use of existing stem cell lines versus new lines in research, the important role of the federal government in this field of research, and other fundamental issues.




Transcriptional and Translational Regulation of Stem Cells


Book Description

This volume describes the latest findings on transcriptional and translational regulation of stem cells. Both transcriptional activators and repressors have been shown to be crucial for the maintenance of the stem cell state. A key element of stem cell maintenance is repression of differentiation factors or developmental genes – achieved transcriptionally, epigenetically by the Polycomb complex, and post-transcriptionally by RNA-binding proteins and microRNAs. This volume takes two approaches to this topic – (1) illustrating the general principles outlined above through a series of different stem cell examples – embryonic, iPS and adult stem cells, and (2) describing several molecular families that have been shown to have roles in regulation of multiple stem cell populations.




Stem Cell Therapies


Book Description

Stem cells offer tremendous promise for advancing health and medicine. Whether being used to replace damaged cells and organs or else by supporting the body's intrinsic repair mechanisms, stem cells hold the potential to treat such debilitating conditions as Parkinson's disease, diabetes, and spinal cord injury. Clinical trials of stem cell treatments are under way in countries around the world, but the evidence base to support the medical use of stem cells remains limited. Despite this paucity of clinical evidence, consumer demand for treatments using stem cells has risen, driven in part by a lack of available treatment options for debilitating diseases as well as direct-to-consumer advertising and public portrayals of stem cell-based treatments. Clinics that offer stem cell therapies for a wide range of diseases and conditions have been established throughout the world, both in newly industrialized countries such as China, India, and Mexico and in developed countries such as the United States and various European nations. Though these therapies are often promoted as being established and effective, they generally have not received stringent regulatory oversight and have not been tested with rigorous trials designed to determine their safety and likely benefits. In the absence of substantiated claims, the potential for harm to patients - as well as to the field of stem cell research in general - may outweigh the potential benefits. To explore these issues, the Institute of Medicine, the National Academy of Sciences, and the International Society for Stem Cell Research held a workshop in November 2013. "Stem Cell Therapies" summarizes the workshop. Researchers, clinicians, patients, policy makers, and others from North America, Europe, and Asia met to examine the global pattern of treatments and products being offered, the range of patient experiences, and options to maximize the well-being of patients, either by protecting them from treatments that are dangerous or ineffective or by steering them toward treatments that are effective. This report discusses the current environment in which patients are receiving unregulated stem cell offerings, focusing on the treatments being offered and their risks and benefits. The report considers the evidence base for clinical application of stem cell technologies and ways to assure the quality of stem cell offerings.




Stem Cells


Book Description

Stem Cells: Therapeutic Innovations under Control traces the discovery of stem cells and induced pluripotent cells. It establishes the link between knowledge about cell development and tissue engineering, and presents perspectives in regenerative medicine. Cell proliferation and tissue architecture open up unexpected applications in tissue engineering, with the development of tissues or organs. In this context emerges the need to address the issue of bioethics and regulatory considerations. Because stem cells can multiply and differentiate into cells specific to a particular tissue or organ, they represent vast potential in the health field. Traces the discovery of stem cells to link knowledge of cell development with tissue engineering Presents prospects in regenerative medicine Establishes the link between knowledge about cell development and tissue engineering




Regulatory Networks in Stem Cells


Book Description

Stem cells appear to be fundamental cellular units associated with the origin of multicellular organisms and have evolved to function in safeguarding the cellular homeostasis in organ t- sues. The characteristics of stem cells that distinguish them from other cells have been the fascinating subjects of stem cell research. The important properties of stem cells, such as ma- tenance of quiescence, self-renewal capacity, and differentiation potential, have propelled this exciting ?eld and presently form a common theme of research in developmental biology and medicine. The derivation of pluripotent embryonic stem cells, the prospective identi?cation of multipotent adult stem cells, and, more recently, the induced pluripotent stem cells (popularly called iPS) are important milestones in the arena of stem cell biology. Complex networks of transcription factors, different signaling molecules, and the interaction of genetic and epi- netic events constantly modulate stem cell behavior to evoke programming and reprogramming processes in normal tissue homeostasis during development. In any given cellular scenario, the regulatory networks can pose considerable complexity and yet exert an orderly control of stem cell differentiation during normal development. An aberration in these ?nely tuned processes during development usually results in a spectrum of diseases such as cancers and neurological disorders. Thisunderscorestheimminentneedforamorecompleteunderstandingofmolecular mechanisms underlying the regulatory circuitries required for stem cell maintenance. Overthepast3–5years,adiversegroupofbenchandphysicianscientistshaveprospectively enhanced our knowledge of stem cell biology. These studies are unveiling many unrecognized or previously unknown fundamentals of developmental biology.




Stem Cells and Extracellular Matrices


Book Description

Stem cells have great potential in regenerative medicine and tissue injury. Regulation of stem cell homeostasis in a 3D microenvironment is controlled by the niche components that influence stem cell fate, regulation, and function. It is therefore necessary to understand the mechanisms of cell-cell interaction, molecular cross talk between stem cells and their extracellular matrix (ECM) environment. The adhesion molecules play a pivotal role in establishing the cell-cell contact and subsequent integration with the ECM. This understanding is the basis for establishing design criteria for biomimetic. The integrated approach by biologists, material science engineers, biomedical engineers, and clinicians is the key in the development of tissue engineered constructs for effective translation to clinics. Table of Contents: Abbreviations / Introduction to Stem Cell Biology and Niche Components / ECM-Structure and Organization / ECM Control, Regulation on Stem Cell Fate and Function / ECM and Stem Cell Cultures / Acknowledgments / Bibliography / Author Biography / Titles of Related Interest




Regulatory Networks in Stem Cells


Book Description

Stem cells appear to be fundamental cellular units associated with the origin of multicellular organisms and have evolved to function in safeguarding the cellular homeostasis in organ t- sues. The characteristics of stem cells that distinguish them from other cells have been the fascinating subjects of stem cell research. The important properties of stem cells, such as ma- tenance of quiescence, self-renewal capacity, and differentiation potential, have propelled this exciting ?eld and presently form a common theme of research in developmental biology and medicine. The derivation of pluripotent embryonic stem cells, the prospective identi?cation of multipotent adult stem cells, and, more recently, the induced pluripotent stem cells (popularly called iPS) are important milestones in the arena of stem cell biology. Complex networks of transcription factors, different signaling molecules, and the interaction of genetic and epi- netic events constantly modulate stem cell behavior to evoke programming and reprogramming processes in normal tissue homeostasis during development. In any given cellular scenario, the regulatory networks can pose considerable complexity and yet exert an orderly control of stem cell differentiation during normal development. An aberration in these ?nely tuned processes during development usually results in a spectrum of diseases such as cancers and neurological disorders. Thisunderscorestheimminentneedforamorecompleteunderstandingofmolecular mechanisms underlying the regulatory circuitries required for stem cell maintenance. Overthepast3–5years,adiversegroupofbenchandphysicianscientistshaveprospectively enhanced our knowledge of stem cell biology. These studies are unveiling many unrecognized or previously unknown fundamentals of developmental biology.




Stem Cells and Human Diseases


Book Description

The main objective of this book is to provide a comprehensive review on stem cells and their role in tissue regeneration, homeostasis and therapy. In addition, the role of cancer stem cells in cancer initiation, progression and drug resistance are discussed. The cell signaling pathways and microRNA regulating stem cell self-renewal, tissue homeostasis and drug resistance are also mentioned. Overall, these reviews will provide a new understanding of the influence of stem cells in tissue regeneration, disease regulation, therapy and drug resistance in several human diseases.




Stem Cells: A Cellular Fountain of Youth


Book Description

The developmental capabilities and therapeutic potential of stem cells are being revealed in studies of cellular signaling mechanisms that regulate their proliferation, differentiation and survival. "Stem Cells: A Cellular Fountain of Youth" reviews the current state of understanding of the molecular mechanisms that regulate embryonic and adult stem cells with an emphasis on how aging and age-related disease impact on these mechanisms. Leading authorities detail the properties and therapeutic potential of embryonic stem cells, and stem cell precursors of blood, nervous and muscle and bone cells. Recent advances in deciphering the environmental signals and intrinsic signal transduction pathways that regulate embryonic stem cells are described, and the potential therapeutic uses of these totipotent cells is considered. Analyses of hematopoietic stem cells during aging suggest an important genetic component to the control of their self-renewing capability which may contribute to determination of lifespan. The contribution of lymphocyte depletion to impaired immune function during aging is considered, as is the potential of hematopoietic cells to form other types of cells including neurons. Several chapters cover the remarkable and rapidly advancing field of neural stem cells. The adult brain contains populations of stem cells capable of forming new neurons and glial cells; the signals that regulate these neural stem cells and the involvement of neurogenesis in normal brain function is described. Because of their potential to replace lost or damaged neurons, there has been intense interest in determining the therapeutic potential of stem cells for the treatment of patients with Parkinson's and Alzheimer's diseases, stroke and traumatic brain and spinal cord injuries. Heart and skeletal muscle contain stem cells and the impact of aging and disease on these stem cell populations and the potential of stem cell therapy to recover function of these organs is reviewed. A final example of the fascinating world of stem cells is a review of the roles of stem cells in bone formation and remodeling. Collectively, this book provides a comprehensive, yet concise, view of stem cell molecular biology in the context of aging and age-related disease. This book will be a valuable reference for graduate students and senior scientists interested in the fascinating world of stem cells and their potential use in the clinic.