Control and Nonlinear Dynamics on Energy Conversion Systems


Book Description

The ever-increasing need for higher efficiency, smaller size, and lower cost make the analysis, understanding, and design of energy conversion systems extremely important, interesting, and even imperative. One of the most neglected features in the study of such systems is the effect of the inherent nonlinearities on the stability of the system. Due to these nonlinearities, these devices may exhibit undesirable and complex dynamics, which are the focus of many researchers. Even though a lot of research has taken place in this area during the last 20 years, it is still an active research topic for mainstream power engineers. This research has demonstrated that these systems can become unstable with a direct result in increased losses, extra subharmonics, and even uncontrollability/unobservability. The detailed study of these systems can help in the design of smaller, lighter, and less expensive converters that are particularly important in emerging areas of research like electric vehicles, smart grids, renewable energy sources, and others. The aim of this Special Issue is to cover control and nonlinear aspects of instabilities in different energy conversion systems: theoretical, analysis modelling, and practical solutions for such emerging applications. In this Special Issue, we present novel research works in different areas of the control and nonlinear dynamics of energy conversion systems.




Nonlinear Control Systems and Power System Dynamics


Book Description

Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.




Control of Nonlinear and Hybrid Process Systems


Book Description

This monograph provides insight and fundamental understanding into the feedback control of nonlinear and hybrid process systems. It presents state-of-the-art methods for the synthesis of nonlinear feedback controllers for nonlinear and hybrid systems with uncertainty, constraints and time-delays with numerous applications, especially to chemical processes. It covers both state feedback and output feedback (including state estimator design) controller designs. Control of Nonlinear and Hybrid Process Systems includes numerous comments and remarks providing insight and fundamental understanding into the feedback control of nonlinear and hybrid systems, as well as applications that demonstrate the implementation and effectiveness of the presented control methods. The book includes many detailed examples which can be easily modified by a control engineer to be tailored to a specific application. This book is useful for researchers in control systems theory, graduate students pursuing their degree in control systems and control engineers.




Power Systems and Power Plant Control 1989


Book Description

The control of power systems and power plants is a subject of growing interest which continues to sustain a high level of research, development and application in many diverse yet complementary areas, such as maintaining a high quality but economical service and coping with environmental constraints. The papers included within this volume provide the most up to date developments in this field of research.




Control System Applications


Book Description

Control technology permeates every aspect of our lives. We rely on them to perform a wide variety of tasks without giving much thought to the origins of the technology or how it became such an important part of our lives. Control System Applications covers the uses of control systems, both in the common and in the uncommon areas of our lives. From the everyday to the unusual, it's all here. From process control to human-in-the-loop control, this book provides illustrations and examples of how these systems are applied. Each chapter contains an introduction to the application, a section defining terms and references, and a section on further readings that help you understand and use the techniques in your work environment. Highly readable and comprehensive, Control System Applications explores the uses of control systems. It illustrates the diversity of control systems and provides examples of how the theory can be applied to specific practical problems. It contains information about aspec ts of control that are not fully captured by the theory, such as techniques for protecting against controller failure and the role of cost and complexity in specifying controller designs.




Intelligent Building Control Systems


Book Description

Readers of this book will be shown how, with the adoption of ubiquituous sensing, extensive data-gathering and forecasting, and building-embedded advanced actuation, intelligent building systems with the ability to respond to occupant preferences in a safe and energy-efficient manner are becoming a reality. The articles collected present a holistic perspective on the state of the art and current research directions in building automation, advanced sensing and control, including: model-based and model-free control design for temperature control; smart lighting systems; smart sensors and actuators (such as smart thermostats, lighting fixtures and HVAC equipment with embedded intelligence); and energy management, including consideration of grid connectivity and distributed intelligence. These articles are both educational for practitioners and graduate students interested in design and implementation, and foundational for researchers interested in understanding the state of the art and the challenges that must be overcome in realizing the potential benefits of smart building systems. This edited volume also includes case studies from implementation of these algorithms/sensing strategies in to-scale building systems. These demonstrate the benefits and pitfalls of using smart sensing and control for enhanced occupant comfort and energy efficiency.




Advances in Applied Nonlinear Optimal Control


Book Description

This volume discusses advances in applied nonlinear optimal control, comprising both theoretical analysis of the developed control methods and case studies about their use in robotics, mechatronics, electric power generation, power electronics, micro-electronics, biological systems, biomedical systems, financial systems and industrial production processes. The advantages of the nonlinear optimal control approaches which are developed here are that, by applying approximate linearization of the controlled systems’ state-space description, one can avoid the elaborated state variables transformations (diffeomorphisms) which are required by global linearization-based control methods. The book also applies the control input directly to the power unit of the controlled systems and not on an equivalent linearized description, thus avoiding the inverse transformations met in global linearization-based control methods and the potential appearance of singularity problems. The method adopted here also retains the known advantages of optimal control, that is, the best trade-off between accurate tracking of reference setpoints and moderate variations of the control inputs. The book’s findings on nonlinear optimal control are a substantial contribution to the areas of nonlinear control and complex dynamical systems, and will find use in several research and engineering disciplines and in practical applications.




High Performance Control of AC Drives with Matlab/Simulink


Book Description

High Performance Control of AC Drives with Matlab®/Simulink Explore this indispensable update to a popular graduate text on electric drive techniques and the latest converters used in industry The Second Edition of High Performance Control of AC Drives with Matlab®/Simulink delivers an updated and thorough overview of topics central to the understanding of AC motor drive systems. The book includes new material on medium voltage drives, covering state-of-the-art technologies and challenges in the industrial drive system, as well as their components, and control, current source inverter-based drives, PWM techniques for multilevel inverters, and low switching frequency modulation for voltage source inverters. This book covers three-phase and multiphase (more than three-phase) motor drives including their control and practical problems faced in the field (e.g., adding LC filters in the output of a feeding converter), are considered. The new edition contains links to Matlab®/Simulink models and PowerPoint slides ideal for teaching and understanding the material contained within the book. Readers will also benefit from the inclusion of: A thorough introduction to high performance drives, including the challenges and requirements for electric drives and medium voltage industrial applications An exploration of mathematical and simulation models of AC machines, including DC motors and squirrel cage induction motors A treatment of pulse width modulation of power electronic DC-AC converter, including the classification of PWM schemes for voltage source and current source inverters Examinations of harmonic injection PWM and field-oriented control of AC machines Voltage source and current source inverter-fed drives and their control Modelling and control of multiphase motor drive system Supported with a companion website hosting online resources. Perfect for senior undergraduate, MSc and PhD students in power electronics and electric drives, High Performance Control of AC Drives with Matlab®/Simulink will also earn a place in the libraries of researchers working in the field of AC motor drives and power electronics engineers in industry.




Advanced Analytic and Control Techniques for Thermal Systems with Heat Exchangers


Book Description

Advanced Analytic Control Techniques for Thermal Systems with Heat Exchangers presents the latest research on sophisticated analytic and control techniques specific for Heat Exchangers (HXs) and heat Exchanger Networks (HXNs), such as Stability Analysis, Efficiency of HXs, Fouling Effect, Delay Phenomenon, Robust Control, Algebraic Control, Geometric Control, Optimal Control, Fuzzy Control and Artificial Intelligence techniques. Editor Libor Pekar and his team of global expert contributors combine their knowledge and experience of investigated and applied systems and processes in this thorough review of the most advanced networks, analyzing their dynamics, efficiency, transient features, physical properties, performance, feasibility, flexibility and controllability. The structural and dynamic analyses and control approaches of HXNs, as well as energy efficient manipulation techniques are discussed, in addition to the design of the control systems through the full life cycle. This equips the reader with an understanding of the relevant theory in a variety of settings and scenarios and the confidence to apply that knowledge to solve problems in an academic or professional setting.Graduate students and early-mid career professionals require a robust understanding of how to suitably design thermal systems with HXs and HXNs to achieve required performance levels, which this book offers in one consolidated reference. All examples and solved problems included have been tried and tested, and these combined with the research driven theory provides professionals, researchers and students with the most recent techniques to maximize the energy efficiency and sustainability of existing and new thermal power systems. - Analyses several advanced techniques, the theoretical background of these techniques and includes models, examples and results throughout - Focusses on advanced analytic and control techniques which have been investigated or applied to thermal systems with HXs and HXNs - Includes practical applications and advanced ideas from leading experts in the field, as well as case studies and tested problems and solutions




High Performance Control of AC Drives with Matlab / Simulink Models


Book Description

A comprehensive guide to understanding AC machines with exhaustive simulation models to practice design and control Nearly seventy percent of the electricity generated worldwide is used by electrical motors. Worldwide, huge research efforts are being made to develop commercially viable three- and multi-phase motor drive systems that are economically and technically feasible. Focusing on the most popular AC machines used in industry – induction machine and permanent magnet synchronous machine – this book illustrates advanced control techniques and topologies in practice and recently deployed. Examples are drawn from important techniques including Vector Control, Direct Torque Control, Nonlinear Control, Predictive Control, multi-phase drives and multilevel inverters. Key features include: systematic coverage of the advanced concepts of AC motor drives with and without output filter; discussion on the modelling, analysis and control of three- and multi-phase AC machine drives, including the recently developed multi-phase-phase drive system and double fed induction machine; description of model predictive control applied to power converters and AC drives, illustrated together with their simulation models; end-of-chapter questions, with answers and PowerPoint slides available on the companion website www.wiley.com/go/aburub_control This book integrates a diverse range of topics into one useful volume, including most the latest developments. It provides an effective guideline for students and professionals on many vital electric drives aspects. It is an advanced textbook for final year undergraduate and graduate students, and researchers in power electronics, electric drives and motor control. It is also a handy tool for specialists and practicing engineers wanting to develop and verify their own algorithms and techniques.